Changing the paradigm for TV silicon tuners
Melissa Chee and Scott Howe, Fresco Microchip
EETimes (4/24/2012 10:09 AM EDT)
Although the TV market continues to mature, the underlying architectures inside the television continue to evolve to drive down prices. "Cost-down" are the two most spoken words in consumer electronics. Increasing cost pressure drove architectural shifts that led to rapid consolidation in the system-on-chip (SOC) market and accelerated adoption of silicon tuners in the television. The ability to achieve the lowest cost system solution without compromising performance requires disruptive technology. This article will look at key TV market trends and their effect on next-generation TV front-end solutions.
Changing TV landscape
Every year more than 250 million TVs ship into analog only and hybrid (analog plus digital) markets worldwide. By the end of 2011, a select few SOC companies accounted for the vast majority of all TVs shipped. The most popular SOCs have integrated functions that are implemented most cost-effectively in the digital domain. At the same time, many silicon tuners have retained this functionality using expensive RF/analog processes, which adds unnecessary system cost and complexity.
Traditionally, many CAN tuners were MOPLL-based (Mixer Oscillator Phase-Locked Loop). As the cost/performance tradeoff improves, silicon tuners are rapidly replacing MOPLLs and are projected to approach nearly 100 percent market penetration in television within the next 18 months. Designing silicon tuners directly on the main TV printed circuit board (PCB) and in the CAN are both common – the implementation depends on the relative RF expertise of the TV maker.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology