Using GPUs to accelerate EDA applications
Uri Tal, Rocketick
EETimes (5/3/2012 12:11 PM EDT)
Graphic Processing Units (GPUs) hold great promise in the field of high-performance-computing (HPC). Having immense computational power and high memory bandwidth packed in a commoditized hardware platform, GPUs have already been successfully utilized by oil and gas companies, and computational finance and similar organizations seeking the best compute-bang for their bucks. EDA applications have a lot in common with other HPC applications – huge quantities of computations and memory-related operations.
EDA applications have been traditionally implemented on regular processors. Most, if not all, of these applications were not designed for parallel or vector processors. For example, HDL simulators, being event-driven, manage a single queue of events and handle events one at a time, serially. To be able to utilize a massive multi-core architecture, it is not sufficient to even completely rewrite the software; the algorithms must be re-thought with parallelism at the heart of the process.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow