Landscape for board design changes beyond 10G
Kinana Hussain, Vitesse
EETimes (5/7/2012 12:39 PM EDT)
The advent of 802.3ap Backplane Ethernet and its low-cost implementation at 10 Gbits/second, 10GBase-KR, has forever changed the way system designers think about the next generation of backplanes. While 10GBase-KR originally was promoted as a network-infrastructure backplane to migrate 10G networks to 40G and 100G Ethernet, it now finds greater utility as a backplane for servers and industrial platforms requiring multi-gigabit bandwidth. As systems demand interfaces capable of handling four-channel and 10-channel paths to 40/100G Ethernet, universal adoption of 10GBase-KR seems likely.
Although 10GBase-KR is a single-channel copper backplane operating at 10.3125 Gbits/s, the ease in implementing four channels has led some system vendors to look upon the single-channel backplane as the ideal stepping-stone for four-channel 40G Ethernet implementations. In the near future, experience gained in 10-Gbit multiple channels will allow 10-channel 100G Ethernet, supported by the current C form-factor pluggable (CFP) and extended-capability pluggable (CXP) modules. Eventually, the availability of faster chip-level transceivers and experience with faster board-level channels will allow four-channel 100G Ethernet, with each channel supporting up to 28 Gbits/s (25 Gbits plus forward error correction overhead). That standard will use the emerging CFP2 multisource agreement (CFP2 MSA) module.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow