Interfacing QDR-II+ Synchronous SRAM with high-speed FPGAs, part 2
Reshmi Ravindran, Cypress Semiconductor
EETimes (9/17/2012 3:36 PM EDT)
Part 1 of this article discussed the hardware aspects required for interfacing QDRII+ memory with an FPGA. Part 2 deals with implementation of the QDR II+ controller in popular FPGAs using standard IP blocks.
Implementation of memory interfaces on FPGAs, especially for high-speed memories, was a tedious process until most of the FPGA vendors started providing configurable memory controller IP, such as the Xilinx Memory Interface Generator (MIG) tool and Altera’s QDR controller Megacore functions. These IP libraries are expensive and are not available with all variants of the FPGAs, however. Fortunately, alternatives exist. Most high-speed FPGAs offer standard IP blocks that can be configured and integrated to build a custom memory controller. This enables designers to develop memory controllers for their application and allows them to customize it suitably. Understanding the timing diagram of QDRII+ is essential for the controller implementation. Let’s take a closer look.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- FPGAs tackle microcontroller tasks: Part 2 - 'Flexible' CPUs
- How to implement high-speed 667 Mbps DDR2 interfaces with FPGAs
- How to use FPGAs to implement high-speed RLDRAM II interfaces
- New Developments in MIPI's High-Speed Automotive Sensor Connectivity Framework
- High-Speed PCIe and SSD Development and Challenges
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)