Bluetooth low energy v6.0 Baseband Controller, Protocol Software Stack and Profiles IP
Vertical crosspoint memory supports ultra-low-power devices for Internet of Things
Update: Synopsys Expands DesignWare IP Portfolio with Acquisition of Kilopass Technology (Jan. 10, 2018)
Linh Hong, Kilopass Technology Inc.
12/3/2012 1:12 PM EST
With its widely varied smart devices, the Internet of Things (IoT) is creating a demand for microcontrollers made application specific by software instead of dedicated system on chip (SoC) designs. "The Internet of Things for us is about the sale of microcontrollers,” said ARM Ltd. CEO Warren East. [1] “We think it is likely to follow a similar path to mobile phones." He estimated that 8 billion MCUs shipped per year across all applications. Last year 15% of MCU shipments were based on the ARM architecture. With MCUs, one silicon device can address a wide range of applications simply by changing the program code, thus reducing the design cycle time and cost to build an SoC for individual market opportunities.
Yet another reason for MCUs instead of SoCs in IoT applications is government agency certification. “Electronics are proliferating in safety-critical applications and designers need simplified system certification and development,” wrote MCU Designline editor Colin Holland. [2] “Sectors being looked at include industrial, medical, automotive, mil/aero, and solar energy.” This argues for a common CPU and operating system not only to eliminate an SoC design cycle but also to shorten the regulatory review process.
This renewed interest in building microcontroller devices to power the devices comprising the IoT has cast a critical eye at the memory architecture used to contain the program code of these devices. The most common solutions currently include ROM, embedded flash, and a combination of an external serial EEPROM and on-chip shadow SRAM. The serial EEPROM provides permanent program storage during sleep or when power is removed, while the shadow SRAM provides the memory that the CPU uses to execute the microcontroller’s program.
Although these approaches serve the purpose, they also have drawbacks. Antifuse nonvolatile memory (NVM) provides an alternative. This article takes a look at the technology and recent advances that make it a good solution for IoT MCUs.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Simplify the Internet of Things connectivity of embedded devices
- MIPI deployment in ultra-low-power streaming sensors
- Power Management for Internet of Things (IoT) System on a Chip (SoC) Development
- Custom ASICs for Internet of Industrial Things (IoIT)
- Opportunities and Challenges for Near-Threshold Technology in End-Point SoCs for the Internet of Things
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology