Ceva-Waves Bluetooth 5.3 Low Energy Baseband Controller, software and profiles
Who's managing your power management?
Bob Frostholm, JVD Inc.
EETimes (2/4/2013 3:26 PM EST)
Today’s complex systems employ a wide variety of semiconductor technologies. From the deepest sub-nanometer processors to the analog I/O, it’s easy to see the need for power management devices for multiple voltages – 1.0V, 1.2V, 1.5V, 1.8V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V and more – all in the same box.
Dozens of companies offer thousands of chips to address these needs. Data sheets, PDKs and application notes make implementation easier than ever. If your volume is high enough, chip company application engineers are more than willing to do the design work for you. Sit back, watch YouTube, follow friends on Facebook and wait for the circuit to arrive by email. It’s not quite that simple, but let’s be honest, there are a lot of free resources out there to assist.
A few dozen years ago, engineers fresh out of school were assigned to the power supply team; the most boring and least challenging aspect of the system and the one most forgiving of inexperience. Could it come to that again?
Not likely. But you really should ask yourself, who is really managing your power management. Is it you or your suppliers? Who really understands your power management needs and more importantly, the solution you’ve implemented? Is your 7Amp 1.2V solution overkill for your 2.9Amp requirement? Could a lower cost LDO be used instead of that switcher?
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Optimizing Analog Layouts: Techniques for Effective Layout Matching
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- I2C Interface Timing Specifications and Constraints