Using the H.264 specification for anywhere, anytime placeshifted video
Anthony Wong, Fujitsu Semiconductor America
embedded.com (February 23, 2013)
Video is everywhere, available to users of handheld devices with Internet broadband access virtually any time, any place, and in many formats. One of the major consumer electronics industry challenges in recent years has been to conveniently, seamlessly, and consistently deliver video across a broad range of formats. The solution is 'placeshifting', which allows consumers to watch live or DVR-recorded content on any wireless device. Placeshifting enables viewing and listening to live, recorded, or pre-stored media on a remote device (computer, tablet, mobile phone, or TV) over the Internet or over a data network.
To stream mobile-device-friendly, full HD-resolution content requires the use of transcoding technology because mobile devices cannot handle MPEG-2. Transcoding adjusts the bit rate required to send the stream over a low-bandwidth network. The optimal transcoder can output the stream for any mobile device.
The latest placeshifting technologies use the proven H.264 standard, with its successful application in handheld devices including today’s popular smart phones and small cameras. Compact, low-power ICs now allow widespread deployment of products capable of playing H.264/AVC video at standard definition and with HD TV resolutions. In these handheld and mobile devices, H.264 combines high quality with low memory sizes, allowing for seamless video.
As the most widely used video-encoding format, H.264 now supports the HTML5 video tag, and is supported on every Blu-ray digital video disc (DVD) player, plus most Flash and Silverlight players. The format’s efficient hardware-acceleration capability delivers excellent, high-definition video even on inexpensive mobile and handheld products. The decoding takes place inside the processor; no additional software support is required.
Another H.264 benefit is the ability to use video taken directly from a camera on the web with no need to encode it. This is significant because the same video with different encoding typically needs additional software support, consuming power and slowing the process.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Ultra HD H.264 Video Codec IP solution on Zynq FPGA
- H.264 High Profile: Codec for Broadcast & Professional Video Application
- The VP8 video codec: High compression + low complexity
- Video encoding with low-cost FPGAs for multi-channel H.264 surveillance
- Wireless HDMI with low-latency, lossless H.264 video codec
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)