Shaving power/area with merged logic in SoC designs
Shilpa Gupta and Gaurav Goyal, Freescale Semiconductor
EDN (December 31, 2013)
In the modern era, there is always a requirement to achieve high frequency with lower power consumption. Achieving both targets simultaneously is very difficult and the situation becomes even more complex while moving down the technology nodes due to various sub-micron effects. A low power solution becomes more urgent as more and more complex features are integrated into any SoC. More features dictate the need for more logic and hence more die size, which eventually affects chip cost. Consequently, it is extremely necessary to have a technique that would be able to reduce the logic without affecting any performance parameter while keeping power in check.
Designers often find the need to include many instances of the same IP in designs. When the identical modules are instantiated twice, the same combinational (combo) logic and flip-flops are of course instantiated twice. So, instead of replicating the whole module, designers can save silicon area/gate count if they have a way to share the combo logic between two IPs. The proposed architecture is a flip-flop design that can reduce the replicated logic in any SoC -- resulting in lower area and power and, accordingly, further reducing the chip cost. Figure 1 depicts the prior and proposed approach of integrating two duplicated IPs in any SoC.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
- Analog and Power Management Trends in ASIC and SoC Designs
- NoC Interconnect Fabric IP Improves SoC Power, Performance and Area
- Programmable logic, SoC simplify power steering, accessory control
- Minimize leakage power in embedded SoC designs with Multi-Vt cells
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)