What Goes Around Comes Around: Moore's Law At 10nm And Beyond
Greg Yeric, ARM
Semiconductor Engineering (February 13th, 2014)
With lithography scaling on hold and the silicon MOSFET losing its 40-odd-year grip on scalability, how can the industry continue to squeeze scaling?
Gordon Moore penned his famous observation in an era when the people developing the process were also the people designing the circuits. Over time, things got more complicated and work specialization set in, but all was well in the world for many years as the fabs kept delivering on Moore’s Law. Yes, designers had to come up with lots of tricks to advance power and performance scaling, but that’s Dennard’s problem, not Moore’s. As a designer in the present day, if you view Moore’s Law from that original, unilateral perspective, then Moore’s Law is indeed long gone.
Or at least on an extended vacation.
Lithography scaling is on hold and the silicon MOSFET is losing its 40-odd-year grip on scalability. I’d like to use this forum to provide a few observations along these lines, which fall into two categories: (1) squeezing existing technology harder and (2) path-finding to the best solution in an increasingly complicated set of technology scaling options.
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
E-mail This Article | Printer-Friendly Page |