Define Analog Sensor Interfaces In IoT SoCs
Manuel Mota, Synopsys
ElectronicDesign.com (July 2, 2014)
Also known as “smart everything,” the Internet of Things (IoT) is grabbing headlines across the industry. As any great new technology, it comes wrapped in shiny paper that touts it as the solution for all things connected, be it the online tracking of the merchandise in a truck across the continent, the automatic sensing of the color of toast in the toaster, or measuring the number of steps walked in a day.
Looking beyond the hype and avoiding the scary potential of hackers taking over the fridge, this technology makes perfect sense for many uses.1 At the 2014 International CES, major industry players showed off their most recent toys (in some cases, literally) that benefit from this technology: wristbands and other wearables for medical, sports, and wellbeing applications; home appliances ranging from light control to the fridge; and even connected cars. While this market is still young, there is clear momentum driven by growing consumer adoption.
E-mail This Article | Printer-Friendly Page |
|
Synopsys, Inc. Hot IP
Related Articles
- Hidden Signals: The Memories and Interfaces Enabling IoT, 5G, and AI
- Think Big for Ultra-Low Power IoT SoCs
- Opportunities and Challenges for Near-Threshold Technology in End-Point SoCs for the Internet of Things
- Save power in IoT SoCs by leveraging ADC characteristics
- Time for multimedia SoCs to get their analog signals right
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)