Process Detector (For DVFS and monitoring process variation)
New Embedded DRAM Solutions for High-Performance SoCs
New leading-edge applications ranging from games to networking infrastructure equipment are driving the need to include large-capacity and high-speed memory on-chip rather than separately as a discrete device. On-chip memory devices enable throughput capabilities into the gigabit-per-second range, as well as compact designs with modest power dissipation and smaller footprints in office, industrial equipment and lightweight electronic devices.
The semiconductor industry is meeting the demands presented by these market trends with system-on-a-chip (SoC) designs. SoCs contain the processor, logic, analog macros and memory needed to perform all of the critical functions; they also represent a major departure from previous system-on-a-board development. In this new, highly integrated chip landscape, innovative solutions for embedded memory are being addressed.
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |