NVM OTP NeoBit in Maxchip (180nm, 160nm, 150nm, 110nm, 90nm, 80nm)
Vision in wearable devices: Expanded application and function choices
Brian Dipert, Embedded Vision Alliance; Ron Shalom, CEVA; Tom Wilson, CogniVue; and Tim Droz, SoftKinetic North America
embedded.com (September 08, 2014)
Once-hot technology markets such as computers and smartphones are beginning to cool off; analyst firm IDC, for example, forecast earlier this year that smartphone sales will increase only 19% this year, down from 39% in 2013. IDC also believes that beginning in 2018, annual smartphone sales increases will diminish to single-digit rates. Semiconductor, software, and electronic systems suppliers are therefore searching for the next growth opportunities, and wearable devices are likely candidates.
Analyst firm Canalys, for example, recently forecast shipments of more than 17 million ‘smart band’ wearables this year, when Canalys predicts the product category will become a key consumer technology, and that shipments will expand to more than 23 million units by 2015 and over 45 million by 2017. In the near term, the bulk of wearable shipments will consist of activity trackers and other smart bands, point of view cameras, and smart watches, but other wearable product types will also become more common, including smart glasses and ‘life recorder’ devices.
These wearable products can be greatly enhanced (and in some cases are fundamentally enabled) by their ability to process incoming still and video image information. Vision processing is more than just capturing snapshots and video clips for subsequent playback and sharing; it involves automated analysis of the scene and its constituent elements, along with appropriate device responses based on the analysis results. Historically known as ‘computer vision’, traditionally vision processing has been the bailiwick of large, heavy, expensive, and power-hungry PCs and servers.
Now, however, although ‘cloud’-based processing may be used in some cases, the combination of fast, high-quality, inexpensive, and energy-efficient processors, image sensors, and software are enabling robust vision processing to take place right on your wrist (or your face, or elsewhere on your person), at price points that enable adoption by the masses. And an industry alliance comprised of leading technology and service suppliers is a key factor in this burgeoning technology success story.
E-mail This Article | Printer-Friendly Page |
|
Ceva, Inc. Hot IP
Related Articles
- Why Embedded Software Development Still Matters: Optimizing a Computer Vision Application on the ARM Cortex A8
- How to cost-efficiently add Ethernet switching to industrial devices
- An Industrial Overview of Open Standards for Embedded Vision and Inferencing
- How Efinix is Conquering the Hurdle of Hardware Acceleration for Devices at the Edge
- MIPI in next generation of AI IoT devices at the edge
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)