Addressing MIPI M-PHY connectivity challenges for more efficient testing
Chris Loberg, Tektronix
embedded.com (September 20, 2014)
As the industry moves to adopt the MIPI Alliance's M-PHY standard, designers are encountering some significant challenges related to oscilloscope measurements and, more specifically, probing. These challenges include strict requirements such as bus termination and input return loss, as well as the need to minimize common mode loading on the device under test (DUT) and signal fidelity requirements such as wide bandwidth, low noise, and high sensitivity.
The intent of this article is to provide information that will increase your chances of accurate and repeatable test results to ensure compliance with the standard. We will first review the requirements of the M-PHY standard relevant to oscilloscope probing, discuss the tests required in the M-PHY Physical Layer Conformance Test Suite (CTS), and provide practical examples of M-PHY probing with currently available oscilloscopes and probes.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Understand and perform testing for MIPI M-PHY compliance
- Integrating VESA DSC and MIPI DSI in a System-on-Chip (SoC): Addressing Design Challenges and Leveraging Arasan IP Portfolio
- M-PHY benefits and challenges
- MIPI M-PHY takes center stage
- New Developments in MIPI's High-Speed Automotive Sensor Connectivity Framework
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)