Securing the IoT: Part 2 - Secure boot as root of trust
Yann Loisel and Stephane di Vito, Maxim Integrated
embedded.com (January 11, 2015)
Security of electronic devices is a must in today’s interconnected world. There is plenty of evidence [1] to show that when the security of a device on the IoT is compromised, you must be cautious, even suspicious of that device and the whole IoT. You most certainly cannot rely on a hacked device for secure data exchange, processing, or storage.
In Part 1 of this article, we focused on the identification of security risks and argued that the best security is embedded in electronic devices. We emphasized countermeasures, specifically public key-based algorithms.
In Part 2 we concentrate on a secure boot, which is the “root of trust” and the cornerstone of an electronic device’s trustworthiness. Note that this discussion assumes that the reader understands the difference between a private and public key in cryptography. You can refer to Part 1 to find plenty of discussion in a Google search of the terms. Here we will demonstrate how device security can be implemented conveniently and how devices can even be updated in the field. The DeepCover secure microcontrollers will serve as trust-enabling example devices to secure the IoT.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Securing the IoT: Part 1 - Public key cryptography
- Securing SoC Platform Oriented Architectures with a hardware Root of Trust
- Using cryptography to secure embedded device authentication profiles: Part 2
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Why Hardware Root of Trust Needs Anti-Tampering Design
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)