7 µW always on Audio feature extraction with filter banks on TSMC 22nm uLL
True Random Number Generators for Truly Secure Systems
David A. Jones, Senior FAE, Synopsys
Random numbers form the basis, or root, of most security systems. Yet the methods for generating random numbers vary widely in practice as well as efficacy. Over time, many popular randomization algorithms and circuit implementations have been shown to be provably flawed. The paper will examine current methods for generating random numbers based on various sources of entropy as well as their associated attack techniques, including physical, statistical, and electronic methods.

If you wish to download a copy of this white paper, click here
|
Synopsys, Inc. Hot IP
Related Articles
- Lockdown! Random Numbers Secure Network SoC Designs
- Embracing a More Secure Era with TLS 1.3
- Neural Networks Can Help Keep Connected Vehicles Secure
- The Future of Safe and Secure Aerospace Systems
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |