Is Tomorrow's Embedded-Systems Programming Language Still C?
Ron Wilson, Altera
What is the best language in which to code your next project? If you are an embedded-system designer, that question has always been a bit silly. You will use, C—or if you are trying to impress management, C disguised as C++. Perhaps a few critical code fragments will be written in assembly language. But according to a recent study by the Barr Group, over 95 percent of embedded-system code today is written in C or C++.
And yet, the world is changing. New coders, new challenges, and new architectures are loosening C’s hold—some would say C’s cold, dead grip—on embedded software. According to one recent study the fastest-growing language for embedded computing is Python, and there are many more candidates in the race as well. These languages still make up a tiny minority of code. But increasingly, the programmer who clings to C/C++ risks sounding like the assembly-code expert of 20 years ago: their way generates faster, more compact, and more reliable code. So why change?
E-mail This Article | Printer-Friendly Page |
|
Altera Hot IP
Related Articles
- PCIe 5.0 vs. Emerging Protocol Standards - Will PCIe 5.0 Become Ubiquitous in Tomorrow's SoCs?
- Efficient 'C' Programming and its Effect on the Performance of Embedded Systems
- Are FPGA soft cores tomorrow's MCUs?
- What's Next for Multi-Die Systems in 2024?
- It's Just a Jump to the Left, Right? Shift Left in IC Design Enablement
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology