Is Tomorrow's Embedded-Systems Programming Language Still C?
Ron Wilson, Altera
What is the best language in which to code your next project? If you are an embedded-system designer, that question has always been a bit silly. You will use, C—or if you are trying to impress management, C disguised as C++. Perhaps a few critical code fragments will be written in assembly language. But according to a recent study by the Barr Group, over 95 percent of embedded-system code today is written in C or C++.
And yet, the world is changing. New coders, new challenges, and new architectures are loosening C’s hold—some would say C’s cold, dead grip—on embedded software. According to one recent study the fastest-growing language for embedded computing is Python, and there are many more candidates in the race as well. These languages still make up a tiny minority of code. But increasingly, the programmer who clings to C/C++ risks sounding like the assembly-code expert of 20 years ago: their way generates faster, more compact, and more reliable code. So why change?
E-mail This Article | Printer-Friendly Page |
|
Intel FPGA Hot IP
Related Articles
- PCIe 5.0 vs. Emerging Protocol Standards - Will PCIe 5.0 Become Ubiquitous in Tomorrow's SoCs?
- Efficient 'C' Programming and its Effect on the Performance of Embedded Systems
- Are FPGA soft cores tomorrow's MCUs?
- What's Next for Multi-Die Systems in 2024?
- It's Just a Jump to the Left, Right? Shift Left in IC Design Enablement
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)