Which IoT protocol should you use for your design?
Rudy Ramos, Mouser Electronics
embedded.com (November 03, 2016)
One thing is for certain when it comes to designing an IoT (Internet of Things) device; it won't be standalone. Unlike the way most traditional embedded devices have been developed in the past, such as the old-style digital thermostat I have in my hallway, IoT devices will always feature some form of communication. In the majority of cases, this will be wireless-based, and the key determining factors in the selection of the way it will communicate will be the required range, the amount of data to be transferred, and the available power budget.
Thus, embedded developers will now find themselves needing to delve into the world of communication protocols, standards, and wireless specifications. Understanding wireless design is a specialist subject in itself; thankfully, the availability of a range of pre-certified, type-approved wireless modules greatly simplifies the task.
The first step in determining which protocol to use for your IoT device is to take a step back and review the OSI 7-layer model. Getting the terminology right and using this model as a way of understanding which protocol method fits where can help. Appreciating the role of the different layers (e.g., physical, transport, network) and their correlation to the task at hand (e.g., communications, data exchange, device management) helps to put everything into context.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow