Make SoCs flexible with embedded FPGA
Geoff Tate, Flex Logix
EDN (November 30, 2016)
Systems designers have long sought to provide programmability and flexibility in their systems designs to meet varying customer needs and evolving standards. The two most common approaches - FPGAs and MPUs/MCUs - provide different kinds of capabilities and complement each other, but have typically been separate devices. Now, chips with both processors and embedded FPGA are becoming a design option.
With the growth of connectivity, information, and data, there is a growing need for new processing capabilities that can span from ultra-low power <$1 microcontrollers to very large networking chips. Moore’s Law has given rise to the availability of new SoCs and MCUs for existing and new markets with each one of these SoCs/MCUs designed specifically for the market segment it is being targeted. This widespread use of special-purpose architectures greatly increases the need for new designs, however, and the rise of new markets (e.g., IoT) and device types (e.g., sensors) for these new markets is growing faster than the SoC types available.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow