Latch-Based RAMs and the Hidden Capacitor
Update: Synopsys Expands DesignWare IP Portfolio with Acquisition of Kilopass Technology (Jan. 10, 2018)
Ron Neale, Independent Electrical/Electronic Manufacturing Professional
EETimes (12/31/2016 10:13 AM EST)
Is there a place for a volatile DRAM replacement? While the VLT as a DRAM replacement might be attractive, any success hinges on effective and innovative solutions to some major problems.
The use of latched threshold switching devices to replace a DRAM, where the off and latched states are used as the two memory logic states, is a recent proposal. With the apparent advantages of no requirement for a new technology, for a dynamic refresh cycle or a separate capacitor.
Two types of device offer this latched memory DRAM replacement possibility. One is based on a single crystal thyristor structure of the type proposed by Kilopass using their vertical layer thyristor structure VLT-RAM, illustrated in Figure 1, for which they have reported at MemCon 2016 significant progress.1 The second latching memory possibility could be achieved by the use of an amorphous film threshold switch, the latter offering the intriguing possibility of a high-density thin film 3D stacked structure.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)