Process Detector (For DVFS and monitoring process variation)
Embedded FPGA: Changing the Way Chips Are Designed
Learn how embedded FPGAs work and what advantages they offer.
Geoff Tate, Flex Logix
allaboutcircuits.com (January 4, 2017)
One of the most critical problems chip designers face today is having to reconfigure RTL at any point in the design process, even in-system. Unfortunately, chip designers have no way of knowing if they will have to do this until it is too late. Any changes at that point end up costing millions of dollars and delaying projects by months.
With embedded FPGA, this problem goes away. Chip designers can finally go into a project knowing they have the flexibility to change RTL at any time during the project, something that has never been possible before.
Because embedded FPGA is a new technology, we will first highlight how it differs from standard FPGAs, which have been around for decades. Basically, an embedded FPGA is an IP block that allows a complete FPGA to be incorporated into an SoC or any kind of integrated circuit. Just as RAM, SERDES, PLL, and processors transitioned from standalone chips to routine IP blocks, FPGA is now also an IP block.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow