FPGA-Based Functional Safety for Industrial Applications
Joe Mallett, Synopsys
EETimes (5/9/2017 10:10 AM EDT)
For industrial applications, the overall average lifetime of manufacturing equipment is growing, and designers need to utilize and deploy components that will work reliably for decades.
There are many functional safety applications targeting FPGAs, and designers are utilizing the functional safety specification to help drive delivery of highly reliable and safe products to market. In the industrial market, for example, where manufacturing equipment relies on the interaction of people with the equipment itself, the integration of key subsystems like motor control and functional safety into a single product is growing. FPGAs are a good fit for this application space due to their long lifetimes, high processing bandwidth, and the flexibility to integrate many functional safety techniques.
Product developers who are concerned about functional safety want to develop their products so that they meet standards and performance requirements that are created to protect against potential risks. The challenge for designers is that the functional safety specification is about risk mitigation; the idea is to remove risk until the product reaches a determined level of safety. There are many ways of achieving the desires result, such as using dual-core lock-step for processors, ECC protection for memory, or some form of custom safety implementation logic. To facilitate building functionally safe designs, robust synthesis tools that support defined methods are needed, such as Synplify Premier, which provides FPGA designers with technologies that facilitate including functional safety capabilities into their products.
E-mail This Article | Printer-Friendly Page |
|
Synopsys, Inc. Hot IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)