Asynchronous reset synchronization and distribution - Special cases
Rostislav (Reuven) Dobkin, vSync Circuits LTD
embedded.com ( August 11, 2017)
Lack of coordination between asynchronous resets and synchronous logic clocks leads to intermittent failures on power up. In this series of articles, we discuss the requirements and challenges of asynchronous reset and explore advanced solutions for ASIC vs FPGA designs.
Asynchronous resets are traditionally employed in VLSI designs for bringing synchronous circuitry to a known state after power up. Asynchronous reset release operation must be coordinated with the synchronous logic clock signal to eliminate synchronization failures due to possible contention between the reset and the clock. A lack of such coordination leads to intermittent failures on power up. The problem exacerbates when large, multiple-clock domain designs are considered. In addition to the synchronization issues, the distribution of an asynchronous reset to millions of flip-flops is challenging, calling for techniques similar to CTS (Clock Tree Synthesis) and requiring similar area and routing resources.
The requirements and challenges of asynchronous reset are reviewed, focusing on synchronization and distribution issues. The drawbacks of classic solutions for reset synchronization (reset tree source synchronization) and distribution (reset tree synthesis) are discussed. Advanced solutions for faster and simpler timing convergence and more reliable reset synchronization and distribution are presented. Different approaches for ASIC versus FPGA designs are detailed.
Part 1 describes the issues surrounding asynchronous resets and outlines approaches for resolving those issues. Part 2 discusses additional solutions for correct asynchronous reset in ASIC and FPGA. Some useful special cases are discussed in Part 3 (this article).
E-mail This Article | Printer-Friendly Page |
Related Articles
- Asynchronous reset synchronization and distribution - ASICs and FPGAs
- Asynchronous reset synchronization and distribution - challenges and solutions
- Configurable Asynchronous Set/Reset Flip-Flop for Post-Silicon ECOs
- Crux of Custom Power & Special Net Routing
- Creating IP level test cases which can be reused at SoC level
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)