Programmable Logic Holds the Key to Addressing Device Obsolescence
Giles Peckham, Xilinx
12/19/2017 00:01 AM EST
The use of programmable devices helps designers not only to address component obsolescence, but also to reduce the cost and complexity of the solution.
Many applications have a long service life — for example those deployed within industrial, scientific and military industries. In these applications, the service life may exceed that of component availability, impacting the ability of the manufacturer to perform repairs or start new production runs. If the obsolete devices are discrete components such as passive devices, replacement parts might be identified more easily.
However, if the component which has been made obsolete is more complex, such as a processor, logic function or microcontroller, then identifying a suitable replacement device is much more complicated. Replacing these more advanced, obsolete components in a design can be very costly, potentially requiring an entire redesign of the electronic hardware and software. The use of programmable devices helps mitigate these impacts allowing designers not only to address the component obsolescence, but also to reduce the cost and complexity of the solution.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Xilinx, Inc. Hot IP
Related Articles
- Chiplet Strategy is Key to Addressing Compute Density Challenges
- Implementing Ultra Low Latency Data Center Services with Programmable Logic
- The growing use of programmable logic in mobile handsets
- Programmable logic, SoC simplify power steering, accessory control
- Using switched capacitors to create programmable analog logic blocks in mixed-signal designs
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow