Auto OEMs, Tier-Ones: Think SoC Designs
By Kurt Shuler, ArterisIP
EETimes (October 8, 2018)
Automotive OEMs and Tier-1 suppliers are in a unique situation these days. Game-changing technology undertakings and hyper business growth in advanced driver assistance systems (ADAS) and autonomous cars are turning automotive design platforms upside-down. Moreover, technologies—from computer vision to 3D mapping, LIDAR to deep learning—are continuously converging and colliding on the way to making self-driving vehicles a reality. The stakes are high for this transformation from a social standpoint because lives can literally be affected.
Fatal crashes involving Tesla and Uber vehicles are a reminder that engineering self-driving cars requires extraordinary care at the system level. Automotive manufacturers are undergoing technology disruptions and consequently can no longer conduct business as usual with Tier-1 suppliers.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Arteris Hot IP
Related Articles
- Creating SoC Designs Better and Faster With Integration Automation
- Speeding Derivative SoC Designs With Networks-on-Chips
- Optimizing Communication and Data Sharing in Multi-Core SoC Designs
- Getting started in structured assembly in complex SoC designs
- Analog and Power Management Trends in ASIC and SoC Designs
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow