How to Verify Complex RISC-V-based Designs
By Zibi Zalewski, Aldec
EETimes (May 28, 2020)
As RISC-V processor development matures and the core’s usage in SoCs and microcontrollers grows, engineering teams face new verification challenges related not to the RISC-V core itself but rather to the system based on or around it. Understandably, verification is just as complex and time consuming as it is for, say, an Arm processor-based project.
To date, industry verification efforts have focused on ISA compliance in order to standardize the RISC-V core. Now, the question appears to be, How do we handle verification as the system grows?
Clearly, the challenge scales with multiple cores and the addition of off-the-shelf peripherals and custom hardware modules
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow