TOPS: The Truth Behind a Deep Learning Lie
By Ludovic Larzul, Mipsology
EETimes (June 25, 2021)
AI companies generally home in on one criterion: more tera operations per second (TOPS). Unfortunately, when silicon manufacturers promote their TOPS metrics, they are not really providing accurate guidance. In most cases, the numbers being hyped aren’t real TOPS, but peak TOPS. In other words, the TOPS number you think you’re getting in a card is actually the best-case scenario of how the chip would perform in a more than perfect world.
I will discuss the problems the industry has created by mislabeling performance metrics and explain how users can independently evaluate real-world TOPS.
Faux TOPS vs real TOPS
AI application developers generally start performing due diligence by gauging whether a chip manufacturer’s published TOPS performance data is adequate for powering their project.
Say you’re trying to remaster images in full HD on the U-Net neural network at 10 fps (frames per second). Since U-Net operations require 3 TOPS per image, simple math says you’ll need 30 TOPS to complete your project at the desired FPS. So, when shopping for a chip, you would assume that cards claiming to run 50, 40, or even 32 TOPS would be safe for the project. In a perfect world, yes, but you’ll soon find out that the card rarely hits the advertised number. And we’re not talking about drops of just a couple of TOPS; compute efficiency can be as low as 10 percent.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- Artificial Intelligence (AI) utilizing deep learning techniques to enhance ADAS
- Understanding the Deployment of Deep Learning algorithms on Embedded Platforms
- Aircraft Jet Engine Failure Analytics Using Google Cloud Platform Based Deep Learning
- Accelerating SoC Evolution With NoC Innovations Using NoC Tiling for AI and Machine Learning
- Performance Evaluation of machine learning algorithms for cyber threat analysis SDN dataset
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)