Developing and verifying 5G designs: A unique challenge
By Lauro Rizzatti
EDN (May 9, 2023)
In general, the largest system-on-chip (SoC) designs in industries such as automotive, artificial intelligence/machine learning (AI/ML), and graphics/computing/storage share complexity and size, measured in billions of transistors. They also reveal a multitude of common functional blocks duplicated several times, including central processing units (CPUs), graphic processing units (GPUs), digital signal processing units (DSPs), arithmetic logic units (ALUs), memory blocks, and standard protocol interfaces. Specific functionality required by end-use applications is mostly implemented in software and sometimes via limited specialized hardware.
That is not the case for 5G infrastructure designs and soon 6G designs. While 5G SoCs include common processing units such as CPUs, DSPs and AI/ALUs, most of the fabric is made of sizeable, complex algorithmic blocks implementing a robust set of unique and not repeatable communication functions. They also combine digital blocks with unusually large analog blocks. Furthermore, they employ software to customize their deployment with service providers globally to comply with different standards.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
Most Popular
- What is JESD204C? A quick glance at the standard
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Optimizing Analog Layouts: Techniques for Effective Layout Matching