Optimizing Electronics Design With AI Co-Pilots
By Ben Gu, Cadence
EETimes (November 27, 2023)
Design processes are evolving rapidly, and their use will enable the highly optimized ICs, PCBs and systems that we need to keep global innovation on track. Today’s efforts to apply analysis much earlier in the design exploration and validation process are already enabling complex multiphysics analyses and co-optimization across domains. However, increasing design complexity means we may soon need to move beyond such in-design analysis—to processes enabled by machine learning (ML) and AI.
This may sound like a reach, but ML techniques are clearly very powerful, if applied intelligently, and the one thing that the electronics industry is never short of is design data. Surely there must be a thoughtful way to bring them together.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Cadence Hot IP
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow