What's Next for Multi-Die Systems in 2024?
By Shekhar Kapoor, Synopsys
It’s hard to imagine the level of systemic scale and complexity that is required to create a world that is truly smart. Applications such as ChatGPT, something we can’t live without, require massive amounts of data to function. The dataset of 300 billion words it was trained on, 60 million daily visits, and more than 10 million queries every day as of June 2023 are just the beginning. The more sophisticated technologies such as AI and high-performance computing (HPC) become, the greater the bandwidth and compute power they depend on.
Multi-die system architectures offer the means for innovation to continue to accelerate as Moore’s law slows, across areas from generative AI to autonomous vehicles and hyperscale data centers. While we are already seeing movement in this direction and will continue to see progress in 2024, uptake is nuanced, and design currently exists in a middle ground from 2D right up to 3D (even extending to 3.5D in some cases) according to performance, power, and area (PPA) requirements — or, more specifically, performance, power, form factor, and cost.
The smart future relies on multi-die system design, but it will need assistance to become a widespread reality in the coming year and beyond. Here are four of the top multi-die system design predictions coming in 2024.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
_Synopsys Blog Hot IP
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow