Speeding Derivative SoC Designs With Networks-on-Chips
With the help of a case study, we examine how adopting NoC technology can significantly improve the process of updating existing chip designs.
By Andy Nightingale, Arteris
All About Circuits (June 6, 2024)
When people talk about the creation of SoCs (systems-on-chips), they typically consider the tools, technologies, and flows associated with developing a new SoC from the ground up. Less discussed but equally important are the challenges associated with taking an existing SoC and using it as the foundation for a derivative design.
The idea of a derivative design is to modify a relatively small portion of a field-proven SoC, perhaps replacing one or more of its functions with upgraded offerings, while keeping the larger proportion of the design as-is. With users constantly requiring “more” in terms of performance and features and “less” in terms of power consumption and cost, derivative designs have the following advantages:
- Leveraging knowledge gained from the original.
- Minimizing cost.
- Limiting demands on resources.
- Reducing risk.
- Speeding time to market.
Creating an entirely new SoC is resource-intensive, time-consuming, and expensive by comparison. However, designing a derivative SoC isn’t without its own challenges, as we’ll soon see.
E-mail This Article | Printer-Friendly Page |
|
Arteris Hot IP
Related Articles
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)