NoCs and the transition to multi-die systems using chiplets
By Ashley Stevens, Arteris
EDN (August 2, 2024)
Monolithic dies have long been used in integrated circuit (IC) design, offering a compact and efficient solution for building application-specific integrated circuits (ASICs), application-specific standard parts (ASSPs) and systems-on-chip (SoCs). Traditionally favored for simplicity and cost-effectiveness, these single-die systems have driven the semiconductor industry’s advancements for decades.
However, as the demand for more powerful and versatile technology grows, the limitations of monolithic dies, particularly in terms of scalability and yield, become increasingly significant. This challenge has prompted a shift toward multi-die systems using chiplets.
Emerging trends in multi-die systems
The semiconductor industry is shifting toward multi-die architectures using chiplets to enable more flexible, scalable, and efficient designs. This transition involves a change in physical architecture and collaborative innovation among various ecosystem players to integrate diverse technologies into a single system.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Arteris Hot IP
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow