NoCs and the transition to multi-die systems using chiplets
By Ashley Stevens, Arteris
EDN (August 2, 2024)
Monolithic dies have long been used in integrated circuit (IC) design, offering a compact and efficient solution for building application-specific integrated circuits (ASICs), application-specific standard parts (ASSPs) and systems-on-chip (SoCs). Traditionally favored for simplicity and cost-effectiveness, these single-die systems have driven the semiconductor industry’s advancements for decades.
However, as the demand for more powerful and versatile technology grows, the limitations of monolithic dies, particularly in terms of scalability and yield, become increasingly significant. This challenge has prompted a shift toward multi-die systems using chiplets.
Emerging trends in multi-die systems
The semiconductor industry is shifting toward multi-die architectures using chiplets to enable more flexible, scalable, and efficient designs. This transition involves a change in physical architecture and collaborative innovation among various ecosystem players to integrate diverse technologies into a single system.
E-mail This Article | Printer-Friendly Page |
|
Arteris Hot IP
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)