Manufacturability With Embedded Infrastructure IPs
by Dr. Yervant Zorian and Dr. Mouli Chandramouli, Virage Logic
Every new generation of semiconductor technology delivers the advantage of higher levels of integration and performance, providing advanced capabilities in a multitude of electronic applications. However, the shrinking geometries of 0.13 micron and below in deep submicron technologies make such devices more susceptible to new yield-limiting defects that impact conventional semiconductor manufacturing operations.
The existing external infrastructure including ATE and associated equipment is not necessarily capable of coping with the new defect levels in terms of detection, isolation, diagnosis, and yield-optimization solutions. This limitation has slowed down the widespread deployment of system-on-a-chip (SOC) designs. To deliver high-volume products, the nanometer technologies require more than external infrastructure.
As a result, we see a need for on-chip support infrastructure to tackle these manufacturability issues. To address this challenge, semiconductor intellectual property (IP) providers have introduced embedded IP blocks called infrastructure IP (IIP), and designers have incorporated these IIP blocks into SOC designs. The IIPs supply a range of test, diagnosis, and repair capabilities throughout the life cycle of the device.
Related Articles
- Software Infrastructure of an embedded Video Processor Core for Multimedia Solutions
- Reusable debug infrastructure in multi core SoC : Embedded WiFi case study
- Infrastructure IPs build ICs out well
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
- Accelerating RISC-V development with Tessent UltraSight-V
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- An Outline of the Semiconductor Chip Design Flow
- Design Rule Checks (DRC) - A Practical View for 28nm Technology
- Synthesis Methodology & Netlist Qualification
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |