Making the UWB PHY a "Transparent Patient"
by Johannes Stahl, CoWare Inc. – June 30, 2004
The debate about the relative merits of Multiband OFDM and Direct Sequence UWB (DS-UWB) continues unabated. The proponents of each approach praise its particular merits, leaving designers to perform comparative analyses based upon their own definitions of operational requirements. The IEEE has taken the responsibility to bring order into this chaos, but how does it—and the industry as a whole—make a sensible standards decision without solid comparison data?
Just as medical researchers are doing with the human body, we must look inside the UWB physical layer (PHY) to analyze its operation and identify improvements. The large number of measurements and data required to do so effectively precludes the use of hardware prototypes, which are time consuming and expensive. Computer simulation using fully transparent models of the various approaches is the only methodology that can perform the requisite relative performance analysis in a reproducible, timely and cost-effective fashion.
Related Articles
- Making your UWB solutions ''Future Proof''
- Deliver "Smarter" Faster: Design Methodology for AI/ML Processor Design
- The Tradeoffs of Low Dropout (LDO) Voltage Regulator Architectures and the Advantages of "Capless" LDOs
- Convey UHD 4K Video over 1Gbit Ethernet with the intoPIX JPEG 2000 "Ultra Low Latency" compression profile
- Achieving High Performance Non-Volatile Memory Access Through "Execute-In-Place" Feature
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |