![]() | |
20 Most Popular Articles
Updated: Mon, 03 Mar 2025 01:00:02 +0100
Today |
Yesterday |
||
1 | 1 |
System Verilog Assertions Simplified Assertion is a very powerful feature of System Verilog HVL (Hardware Verification Language). Nowadays it is widely adopted and used in most of the design verification projects. This article explains the concurrent assertions syntaxes, simple examples of their usage and details of passing and failing scenarios along with waveform snippets for the ease of understanding. |
|
2 | 2 |
System Verilog Macro: A Powerful Feature for Design Verification Projects SV macro is one of the most powerful features out there and if used properly with a thorough understanding and applied wisely in a DV project, it can help to save a lot of time and can make the code more readable and efficient. This paper shows how, using SV macro with the proper syntaxes, a DV engineer can break up the larger complex code in smaller chunk and can reuse it at many places. |
|
![]() |
3 | 17 |
PCIe error logging and handling on a typical SoC This paper details first PCIe errors, error logging and then the error handling on a typical SoC. |
![]() |
4 | 10 |
Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2) The objective of this paper is to illustrate congestion, shorts, and practical approaches to fix both issues at lower/higher technology nodes. This paper also includes PnR tool (ICC2) related commands and their uses to overcome the mentioned issues. |
![]() |
5 | 8 |
Synthesis Methodology & Netlist Qualification The main objective of this article is to explain synthesis flow and post-synthesis netlist quality checks. In ASIC flow, synthesis is the part of the front-end design, while the back-end design takes the synthesized netlist as an input. So, the synthesized netlist should meet all netlist quality checks to reduce multiple iterations, which reduces the turnaround time and efforts. |
![]() |
6 | 3 |
An Outline of the Semiconductor Chip Design Flow his article provides an overview of the chip design flow, its different stages, and their contributions toward creating an effective chip. These stages include system specifications, architectural design, functional design, logic design, circuit design, physical design verification, and manufacturing. |
![]() |
7 | 4 |
UPF Constraint coding for SoC - A Case Study This paper deals with the implementation of UPF for low power SoC design that can encompass several vendor IPs and custom IPs UPF constraints. |
![]() |
8 | 7 |
Design Rule Checks (DRC) - A Practical View for 28nm Technology The main objective of this paper is to explain the various types of design rule checks (DRC) violation, their causes and how to fix the various design rule checks (DRC) at lower technology node on block level as well as full chip level implementation while meeting the design rule with respect to latest technology standards. |
![]() |
9 | 13 |
Layout versus Schematic (LVS) Debug In ASIC physical implementation, once layout is generated, it must follow all the design rules for successful manufacturing and must match the schematic of the required design. To ensure this in physical verification, Design Rule Check (DRC) is carried out to check whether the layout follows the rules for fault-less manufacturing or not. |
![]() |
10 | 5 |
Method for Booting ARM Based Multi-Core SoCs In the boot process various modules/peripherals (like clock controller or security handing module and other master/slaves) initialized as per the SoC architecture and customer applications. In Multi core SoCs, first primary core (also called booting core) start up in boot process and then secondary cores are enabled by software. |
![]() |
11 | 19 |
Scan Chains: PnR Outlook At times physical design engineers find it difficult to relate with the additional timing modes introduced in PnR due to DFT insertion. These additional timing modes and related issues could be handled more efficiently if we understand why a scan chain is needed and how it works. |
![]() |
12 | 11 |
Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution Formal verification techniques have been developed using mathematical proof rather than simulation or test vectors to provide a higher level of verification confidence on properties. For example, the implementation can be either a Verilog RTL module or an abstract version of a particular design, while the specification is typically a set of properties that needs to be verified and expressed suitably. So, formal verification provides a complete verification of each specification property under considering corner cases even without test vectors. |
![]() |
13 | 6 |
I2C Interface Timing Specifications and Constraints This paper covers the timing specification of I2C (Inter-Integrated Circuit) bus protocol. We have described all the timing specifications and how they are achieved by constraining our design. This paper focuses on the timing constraints for fast mode plus (The data transfer rate is 1 Mbit/s). |
![]() |
14 | 15 |
Optimizing Analog Layouts: Techniques for Effective Layout Matching In analog layout design, precise layout matching techniques are crucial to ensure the accuracy and performance of the circuit so that transistors exhibit similar electrical properties (i.e. transconductance, current gain, and drain capacitance). |
![]() |
15 | New!!! |
Usage of Multibit Flip-Flop and its Challenges in ASIC Physical Design The continuous need for reduced size of the chip in the VLSI industry brings exciting challenges to the layout engineers for designing better and high-performing integrated circuits, which needs to consume low power even while reducing the silicon area and cost involved. Internal power is a component of the total power consumed by the chip, which is becoming more challenging to handle with the shrinking technology nodes. |
![]() |
16 | New!!! |
A Guide on Logical Equivalence Checking - Flow, Challenges, and Benefits This white paper functions as a guide, outlining why LEC (Logical Equivalence Check) is important in the ASIC design cycle, how to check it, and what to do when LEC is failing. |
![]() |
17 | New!!! |
Design Rule Violation fixing in timing closure Design Rule violation is one of the major challenges being faced by VLSI industry. With ever shrinking technology nodes, and ever increasing gate counts, reaching to more than 40 million on a single die, the complexity of the design is momentous! |
![]() |
18 | 14 |
Dynamic Memory Allocation and Fragmentation in C and C++ In C and C++, it can be very convenient to allocate and de-allocate blocks of memory as and when needed. This is certainly standard practice in both languages and almost unavoidable in C++. However, the handling of such dynamic memory can be problematic and inefficient. For desktop applications, where memory is freely available, these difficulties can be ignored. For embedded - generally real time - applications, ignoring the issues is not an option. |
![]() |
19 | 18 |
SoC Verification Flow and Methodologies In this article, let me walk you through various verification methodologies we use for verifying IPs, Sub-systems, and SoCs and explain why we need new methodologies/standards like PSS. |
![]() |
20 | 12 |
A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology The intent of this paper is to explain the varied kinds of DRCs (Design Rule Checks) that are encountered in the Physical Design flow. This paper will discuss the Metal DRC violations (7nm Technology) generally seen at the block level and outline the practical approach to fix them. |