Automotive System & Software Development Challenges - Part 1
Frank Schirrmeister, Cadence Design Systems
EDN (November 5, 2013)
Today’s high-end cars contain between 70 and 100 embedded processors and run up to 100 million lines of code according to the IEEE Spectrum article “This Car runs on Code.” Specialized cars, like Indy cars can have many more sensors and data acquisition/telemetry components to optimize for racing. Integration of all the hardware and software needed to make any car perform correctly is no small task. It takes a lot of simulation, modeling, verification and IP.
This article will summarize the development challenges from analog-mixed-signal simulation to proper system configuration as well as hardware software co-design and outline some solutions that are essential to successful system development across the design chain.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Cadence Hot IP
Related Articles
- Automotive System & Software Development Challenges - Part 2
- Dealing with automotive software complexity with virtual prototyping - Part 1: Virtual HIL development basics
- Dealing with automotive software complexity with virtual prototyping - Part 2: An AUTOSAR use case
- Developing an automotive electrical distribution system Part 1: System design
- Paving the way for the next generation audio codec for the True Wireless Stereo (TWS) applications - PART 1 : TWS challenges explained
New Articles
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
- Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
- How the Ability to Manage Register Specifications Helps You Create More Competitive Products
- EAVS - Electra IC Advanced Verification Suite for RISC-V Cores