Industry Expert Blogs
Understanding Anti-Tamper Technology: Part 3Rambus Blog - Scott Best, RambusAug. 13, 2020 |
In part one of this three-part blog series, we discussed the low-cost attacks that target security chips such as protocol and software attacks, brute force glitch attacks, as well environmental attacks. In part two, we took a closer look at attacks executed by more sophisticated adversaries. These include side-channel attacks, clocking attacks, fault injection, and infrared emission analysis. In this blog post, we explore the most sophisticated attacks that can target your security chip, such as laser voltage probing, focused ion beam (FIB) editing, reverse engineering, and NVM extraction.
Since these advanced techniques typically originate from national labs or other state funded actors, your adversary will be using advanced failure analysis equipment to gain a detailed picture of the inner workings of your security chip. It is important to understand that bringing a state-of-the-art 10 billion transistor SoC to market in a leading-edge technology node necessitates the use of leading-edge failure analysis equipment to help debug a chip on its path to mass production. Your adversary will have access to this failure analysis equipment and can repurpose it to gain more insight into what a security chip is doing.
Related Blogs
- Understanding Anti-Tamper Technology: Part 2
- Mitigating Side-Channel Attacks In Post Quantum Cryptography (PQC) With Secure-IC Solutions
- Moortec "Let's Talk PVT Monitoring" Series with CTO Oliver King
- Experts Talk: RISC-V CEO Calista Redmond and Maven Silicon CEO Sivakumar P R on RISC-V Open Era of Computing
- Obsolete & EOL Parts