Industry Expert Blogs
Domain-Specific AcceleratorsCodasip Blog - Roddy UrquhartMay. 24, 2021 |
Semiconductor scaling has fundamentally changed
For about fifty years, IC designers have been relying on different types of semiconductor scaling to achieve gains in performance. Best known is Moore’s Law which predicted that the number of transistors in a given silicon area and clock frequency would double every two years. This was combined with Dennard scaling which predicted that with silicon geometries and supply voltages shrinking, the power density would remain the same from generation to generation, meaning that power would remain proportional to silicon area. Combining these effects, the industry became used to processor performance per watt doubling approximately every 18 months. With successively smaller geometries, designers could use similar processor architectures but rely on more transistors and higher clock frequencies to deliver improved performance.
Since about 2005, we have seen the breakdown of these predictions. Firstly, Dennard scaling ended with leakage current rather than transistor switching being the dominant component of chip power consumption. Increased power consumption means that a chip is at the risk of thermal runaway. This has also led to maximum clock frequencies levelling out over the last decade.
Secondly, the improvements in transistor density have fallen short of Moore’s Law. It has been estimated that by 2019, actual improvements were 15× lower than predicted by Moore in 1975. Additionally, Moore predicted that improvements in transistor density would be accompanied by the same cost. This part of his prediction has been contradicted by the exponential increases in building wafer fabs for newer geometries. It has been estimated that only Intel, Samsung, and TSMC can afford to manufacture in the next generation of process nodes.
Related Blogs
- Intel Embraces the RISC-V Ecosystem: Implications as the Other Shoe Drops
- Moortec "Let's Talk PVT Monitoring" Series with CTO Oliver King
- Let's Talk PVT Monitoring: Thermal Issues Associated with Modern SoCs - How Hot is Hot?
- Let's Talk PVT Monitoring: AVS & DVFS
- Ecosystem Collaboration Drives New AMBA Specification for Chiplets