Axeon has working silicon of Learning Processor
Axeon has working silicon of Learning Processor
By Peter Clarke, EE Times
November 8, 2000 (2:50 p.m. EST)
URL: http://www.eetimes.com/story/OEG20001108S0009
LONDON Two-year-old startup Axeon Ltd. (Aberdeen, Scotland) has received working silicon from its foundry of the "Learning Processor," an array of 256 RISC processors, and is ready to start benchmarking the device, the company said. After delays with faulty first-time silicon, Axeon will test the Learning Processor in a channel equalization application for 3G communications. Although this is Axeon's initial goal, and one for which it has successfully just closed a funding round worth about $5 million, the company claims the technology is suitable for other applications as diverse as inertial navigation and automated image analysis. Axeon is now able to supply development boards based on a Learning Processor array implemented in a 0.6-micron CMOS process technology together with an array controller and I/O system contained in a separate FPGA. In its current implementation, the Learning Processor is a n array of 256 8-bit RISC processors that operate at 50 MHz. The maximum clock frequency is expected to scale up to about 500 MHz as the array design is recast in 0.18- and 0.13-micron CMOS. As the clock frequency increases the die area required for the array will shrink, reducing the cost of discrete packaged devices and the area on a system-chip taken up by the Learning Processor, the company said. The processor is based on theoretical work on self-organizing maps written by Neil Lightowler while he was a graduate student at Aberdeen University. Lightowler is a cofounder and chief technology officer of Axeon. "Having working silicon allows us to build an application demonstration," said Hamish Grant, founder and chief executive officer of Axeon. Grant said Axeon would eventually offer both the array and its controller as soft intellectual property (IP) defined at the register transfer level. "Both elements will be sold as an IP core to be integrated within a baseband chip," he said. Gra nt had said in September 1999 that Axeon planned to have silicon that same year, but the silicon "didn't work right first time," he said. "But we got it to work second time around. It means we've spent two years in the development cycle rather than 18 months." Despite the delay, backers have returned to fund a second round. And the extra time has also convinced Grant of the market opportunity for the Learning Processor in 3G communications. "The operating companies are saying the technology is not yet there; that early terminals will operate at just 56 kbits/second rather than the 2 Mbits/second the standards allow for," he said. "People are struggling to design receivers. But our array will effectively replace the rake receiver in such a terminal." Grant said the early test results support the technology's ability to realize the bandwidth rate promised, but as yet unachieved, by 3G communications developers. The Axeon solution should not only deliver the necessary functionality but do so in a small area and with low power consumption, the company said.
Related News
- Renesas Will Demonstrate the First Working Silicon Based on the Recently Debuted Arm Cortex-M85 Processor
- X-Silicon Announces a NEW Low-Power Open-Standard Vulkan-Enabled C-GPU™ - a RISC-V Vector CPU Infused with GPU ISA and AI/ML acceleration in a Single Processor Core
- Think Silicon and Edge Impulse Democratize ML on NEOX® for Wearables and AIoT
- Realtek Deploys Cadence Tempus Timing Solution to Deliver Working Silicon on N12 Design
- Analog Bits to Demonstrate Working Silicon on TSMC N3E Process at TSMC 2023 North America Technology Symposium
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |