ARCHITECTURES: Chip spearheads customizable IP
EE Times: ARCHITECTURES: Chip spearheads customizable IP | |
Ron Wilson (08/01/2005 9:00 AM EDT) URL: http://www.eetimes.com/showArticle.jhtml?articleID=166403312 | |
Fremont, Calif. The block diagrams for most moderate-sized systems-on-chip look just about the same. You have your CPU, a local bus with cache, a DRAM controller and maybe an accelerator, a bridge and a peripheral bus with a bunch of I/O controllers, ranging from simple programmable I/O pins to fairly complicated blocks. If you could just change one or two blocks to fit particular customer needs, you could cover a huge range of applications with one piece of silicon.
That observation has not escaped chip vendors. As far back as the Motorola 6805 family, chip makers have attempted to make MCU peripherals as interchangeable blocks, so that any combination could simply be dropped into a design flow. But with the growing complexity of intellectual-property integration at finer geometries, this approach has become too expensive for less-than-stellar opportunities, even with proven IP.
Now, STMicroelectronics believes it has another alternative that will be particularly valuable to some customers. Combining the eASIC single-mask-configurable fabric with an ARM9, ST's Structured Processor Enhanced Architecture, or Spear, chip, which just began sampling, provides a basic background set of peripherals and memory and then gives the customer the opportunity to insert up to about 400,000 gates of IP.
The basic layout of the chip is absolutely vanilla: a 192-MHz ARM 946 core with instruction and data caches, an AHB bus with three USB 2.0 ports and a 10/100 Ethernet media-access controller, an interface to off-chip memory and an APB bus gathering up a host of low-speed I/O devices, including an A/D converter.
The unique thing about the chip is the eASIC fabric. The block is provided with connections to the AHB, directly into the CPU core via the coprocessor port, and to its own I/O pins. The fabric allows implementation of up to 400k equivalent ASIC gates of logic or SRAM, at a speed that lets circuits in the fabric clock at the ARM's 192-MHz rate. Thus, customers can configure the fabric to implement either peripheral blocks or closely coupled accelerators, or both.
ST is providing two stages of development and debug support for the chip. At the simulation stage, the company supplies full netlists, so customers can simulate the full chip, including their own logic configurations. For hardware prototyping, there is a debug mode that can multiplex the AHB-to-I/O pins at reduced speed, naturally so that an external FPGA can be used to prototype the functions in the configurable fabric. Production
Offering an alternative at essentially cell-based performance, density and power, but with turnaround times and customization charges near those of FPGA-based alternatives, the Spear may extend the reach of standard-product systems-on-chip further into the applications that previously, because of their volumes or time-to-market requirements, had to settle for FPGA solutions.
| |
- - | |
Related News
- CEA-Leti Launches OpenTRNG, an Open-Source Project For True Random Number Generators Using Ring-Oscillator-Based Architectures
- MIPI Alliance Releases A-PHY v2.0, Doubling Maximum Data Rate of Automotive SerDes Interface To Enable Emerging Vehicle Architectures
- Agile Analog delivers customizable IP on GlobalFoundries' FinFet and FDX processes
- Xylon Offers ARTIEYE - a Complete Technology Suite for Customizable AI-based Driver Monitoring Systems
- QuickLogic Unveils Customizable eFPGA IP on GlobalFoundries' 12LP Process
Breaking News
- Baya Systems Raises $36M+ to Propel AI and Chiplet Innovation
- Andes Technology D45-SE Processor Achieves ISO 26262 ASIL-D Certification for Functional Safety
- VeriSilicon and Innobase collaboratively launched second-generation Yunbao series 5G RedCap/4G LTE dual-mode modem IP
- ARM boost in $100bn Stargate data centre project
- MediaTek Adopts AI-Driven Cadence Virtuoso Studio and Spectre Simulation on NVIDIA Accelerated Computing Platform for 2nm Designs
Most Popular
- Alphawave Semi to Lead Chiplet Innovation, Showcase Advanced Technologies at Chiplet Summit
- Arm Chiplet System Architecture Makes New Strides in Accelerating the Evolution of Silicon
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology
- Cadence to Acquire Secure-IC, a Leader in Embedded Security IP
- Blue Cheetah Tapes Out Its High-Performance Chiplet Interconnect IP on Samsung Foundry SF4X
E-mail This Article | Printer-Friendly Page |