Faraday Pioneers in Providing On-Chip Variation (OCV) Information for Cell Libraries
Faraday's advanced built-in OCV library provides location, level, and cell-based OCV analysis to address the effects of on-chip statistical process variation, which can no longer be ignored in 0.13 µm designs or below. Most significantly, it improves timing accuracy and reduces the effort for timing closure, thus increasing the productivity for 0.13 µm timing signoff. The OCV methodology can save the chip size while speeding up time to market and assuring of high product yield, and it is so very easy to implement!
"With our new advanced OCV library and methodology, Faraday has established itself as the innovator and leader in 0.13 µm static timing analysis and signoff," said Dr. George Hwang, Vice President of R&D and International Business, Faraday. "Its introduction makes us the first ASIC/SIP vendor who offers the back-end intra-die timing analysis total solution for 0.13 µm ASIC designs."
About Faraday's LLC-OCV Library and Methodology
The traditional OCV methodology uses a constant derating factor and may impose unnecessary performance penalties on 0.13 µm designs, including reduced performance, larger die sizes and longer design cycles. Faraday's advanced OCV library and methodology use variable derating factors based on the gate level, physical location, and the respective used cell to select the optimal derating factor for each timing path. This enhances the accuracy of timing analysis, eliminates unnecessary timing violations, and allows design teams to rapidly achieve timing closure.
The 0.13 µm HS library with the OCV technology is currently available. The 90 nm series will be ready by Q1 2007.
|
Faraday Technology Corp. Hot IP
Related News
- Faraday Delivers a Complete Set of Cell Libraries and Memory Compilers for UMC 28nm HPC Process
- Faraday Delivers a Complete Set of UMC 28nm Cell Libraries and Memory Compilers
- Analog Bits Unveils Integrated Sensor Macro Family
- Synopsys PrimeTime Advanced On-chip Variation Analysis Enables Renesas to Accelerate Timing Closure at 65-nm and Below
- RAAAM Memory Technologies and NXP Semiconductors Announce Collaboration to Implement High Density On-Chip Memory
Breaking News
- Baya Systems Raises $36M+ to Propel AI and Chiplet Innovation
- Andes Technology D45-SE Processor Achieves ISO 26262 ASIL-D Certification for Functional Safety
- VeriSilicon and Innobase collaboratively launched second-generation Yunbao series 5G RedCap/4G LTE dual-mode modem IP
- ARM boost in $100bn Stargate data centre project
- MediaTek Adopts AI-Driven Cadence Virtuoso Studio and Spectre Simulation on NVIDIA Accelerated Computing Platform for 2nm Designs
Most Popular
- Alphawave Semi to Lead Chiplet Innovation, Showcase Advanced Technologies at Chiplet Summit
- Arm Chiplet System Architecture Makes New Strides in Accelerating the Evolution of Silicon
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology
- Cadence to Acquire Secure-IC, a Leader in Embedded Security IP
- Blue Cheetah Tapes Out Its High-Performance Chiplet Interconnect IP on Samsung Foundry SF4X
E-mail This Article | Printer-Friendly Page |