Commentary: ANSI C won't work for ESL
(05/10/2007 2:36 PM EDT), EE Times
While SystemC has been accepted by most systems, semiconductor, and EDA companies as the language of choice for high-speed system-level modeling, there is a continued debate over which language is best for electronic system level (ESL) synthesis.
Some prefer ANSI C or C++. They argue that the breadth of algorithmic software available in these languages and the large numbers of people familiar with them make them a natural fit for synthesizing hardware implementations from high-level algorithmic descriptions.
These arguments have some merit, and at first blush the prospect of re-using existing software source code for hardware implementation looks fast and easy. Unfortunately, hardware designers attempting this while continuing to meet the challenging power consumption, silicon area, and performance demands of today's high-volume consumer oriented systems-on-chip will encounter two intractable problems. Source code optimized for execution on a processor is unsuitable for direct hardware implementation, and C and C++ have a fundamental inability to express constructs that are necessary for effective hardware design.
E-mail This Article | Printer-Friendly Page |
Related News
Breaking News
- MediaTek Adopts AI-Driven Cadence Virtuoso Studio and Spectre Simulation on NVIDIA Accelerated Computing Platform for 2nm Designs
- MIPI Alliance Announces Board Leadership Appointments
- Alphawave Semi Q4 2024 Trading and Business Update
- ST-GloFo fab plan shelved
- Arm Chiplet System Architecture Makes New Strides in Accelerating the Evolution of Silicon
Most Popular
- Alphawave Semi to Lead Chiplet Innovation, Showcase Advanced Technologies at Chiplet Summit
- Altera Launches New Partner Program to Accelerate FPGA Solutions Development
- Electronic System Design Industry Posts $5.1 Billion in Revenue in Q3 2024, ESD Alliance Reports
- Breaking Ground in Post-Quantum Cryptography Real World Implementation Security Research
- YorChip announces patent-pending Universal PHY for Open Chiplets