Berkeley Design Automation Enters Analog/RF Mixed-Signal Verification
SANTA CLARA, CA, -- June 5, 2008 -- Berkeley Design Automation, Inc., provider of Precision Circuit Analysis™ technology for advanced analog and RF integrated circuits (ICs), today announced the availability of true SPICE accurate analog/RF mixed-signal verification based on co-simulation of its award-winning Analog FastSPICE™ circuit simulator with leading Verilog® HDL simulators. Numerous design teams around the world have verified that Analog FastSPICE Co-Simulation delivers identical results 5x-10x faster than any other true SPICE accurate solution.
Analog and RF design teams face increasingly difficult mixed-signal verification challenges. Complex blocks such as fractional-N PLLs, frequency synthesizers, and transmit and receive chains increasingly include complex digital logic. Nanometer CMOS ICs such as system-on-chips (SoCs), wireless transceivers, power ICs, and data converters have a rich mix of digital logic and high-performance analog/RF circuitry. Design teams want to verify their analog/RF circuitry with true SPICE accuracy together with their digital logic using their standard Verilog simulator. Doing so has become impractical or impossible with traditional SPICE due to their limited performance and capacity. Instead design teams have had to use analog/mixed-signal behavioral or digital fastSPICE simulators that sacrifice critical accuracy, thereby putting their whole project at risk. Analog FastSPICE Co-Simulation provides design teams an unprecedented combination of true SPICE accuracy, 5x-10x higher performance, and 5x-10x higher capacity – all using an industry standard flow.
" Verifying analog/RF mixed-signal complex blocks and full circuits is critical to delivering high-quality silicon on time,” said Tirdad Sowlati, senior director of RFIC design engineering at Skyworks Solutions, Inc. "We have been using Analog FastSPICE Co-Simulation to verify our power control loop and our full-chip transceiver. It is easy to use and delivers true SPICE accurate results 5x-10x faster with far higher capacity than traditional SPICE-based mixed-signal solutions.”
Analog FastSPICE Co-Simulation uses a standard Cadence® Analog Design Environment based flow, includes mixed-analog/digital debugging, and integrates with industry leading Verilog simulators including Cadence NC-Verilog®, Cadence Verilog-XL, and Mentor Graphics® ModelSim®. The Analog FastSPICE circuit simulator uses standard Cadence Spectre® and Synopsys® HSPICE® netlists and models and delivers identical results to traditional “golden” SPICE simulators 5x-10x faster and with 5x-10x higher capacity. The results are foundry certified down to 45nm. The capability is available immediately.
Berkeley Design Automation tools include Analog FastSPICE™ circuit simulation, Noise Analysis Option™ device noise analyzer, RF FastSPICE™ periodic analyzer, and PLL Noise Analyzer™ stochastic nonlinear engine. The company guarantees identical waveforms to the leading "golden" SPICE simulators down to noise floor (typically 0.1% or less) while delivering 5x-10x higher performance and 5x-10x higher capacity. It achieves this by using advanced algorithms and numerical analysis techniques to rapidly solve the full-circuit matrix and the original device equations without any shortcuts that could compromise accuracy.
Design teams from top-10 semiconductor companies to leading startups use Berkeley Design Automation tools to solve big analog/RF verification problems. Typical applications include characterizing complex blocks (e.g., PLLs, ADCs, DC:DC converters, PHYs, Tx/Rx chains) and running performance simulation of full circuits (e.g., wireless transceivers, wireline transceivers, high-speed I/O macros, memories, microcontrollers, data converters, and power converters).
"Most of our nearly 50 leading-edge customers have faced tremendous challenges in analog/RF mixed-signal verification," said Ravi Subramanian, president and CEO of Berkeley Design Automation. "With Analog FastSPICE Co-Simulation, we are proud to deliver another industry first that is already proven on some of the industry’s most complex production circuits. This capability will help our customers continue delivering superior products to market significantly faster.”
About Berkeley Design Automation
Berkeley Design Automation, Inc. is the recognized leader in advanced analog/RF verification. Its Precision Circuit Analysis technology combines the accuracy, performance, and capacity needed to verify GHz designs in nanometer-scale silicon. Berkeley Design Automation has received numerous awards including EDN Magazine's 2006 Innovation of the Year, the 2006 Red Herring 100 North America, and the 2007 Red Herring Global 100 Finalist. Founded in 2003, the company is funded by Woodside Fund, Bessemer Venture Partners, Matsushita Electric Industrial Co. Ltd., and NTT Corporation. For more information, see http://www.berkeley-da.com.
|
Related News
- Mentor Graphics Acquires Berkeley Design Automation to Advance Nanometer Analog/Mixed-Signal Verification
- Knowlent Brings Advanced Analog/Mixed-Signal Verification Environment to Users of Synopsys Discovery AMS solutions
- Siemens delivers AI- accelerated verification for analog, mixed-signal, RF, memory, library IP and 3D IC designs in Solido Simulation Suite
- Synopsys Enters Mixed-Signal Implementation Market With Galaxy Custom Designer
- Global Semiconductor Alliance Announces Release of Analog/Mixed-Signal/Radio Frequency Process Checklist Version 1.0
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |