UMC Announces Foundry Industry's First 28nm SRAMs
HSINCHU, Taiwan -- October 27, 2008 -- UMC (NYSE: UMC; TSE: 2303), a leading global semiconductor foundry, today announced that it has manufactured the foundry industry's first fully functional 28nm SRAM chips. The chips are based on UMC's independently developed low-leakage (LL) process technology. UMC utilized advanced double-patterning immersion lithography and strained silicon technology to produce the chips, which feature very small six-transistor SRAM cell sizes of approximately 0.122 um2.
"UMC's continued R&D commitment has helped us maintain our leadership position in nanometer technology over the years," said S.C. Chien, vice president of advanced technology development at UMC. "We are excited about this latest achievement for 28nm, as it provides a solid starting point for further development of this technology node towards mainstream availability down the road. Improvements on areas such as minimum supply-voltage, modeling of strain effects, and natural yield will be our focus going forward."
UMC incorporates a dual approach for its 28nm technology to address different market applications. The foundry uses conventional silicon gate/silicon-oxy-nitride gate oxide technology for its LL (low leakage) process, which is ideal for portable applications such as mobile phone ICs. UMC's second option will utilize a high-k/metal gate stack for speed-intensive products such as graphic, application processor, and high-speed communication ICs. UMC's 28nm process provides almost twice the density of the 40nm technology, which is currently being produced at its 300mm fabs. UMC will also provide foundry services for customized 32nm technologies based on its 28nm process platform.
About UMC
UMC (NYSE: UMC, TSE: 2303) is a leading global semiconductor foundry that provides advanced technology and manufacturing services for applications spanning every major sector of the IC industry. UMC's customer-driven foundry solutions allow chip designers to leverage the strength of the company's leading-edge processes, which include production proven 65nm, 45/40nm, mixed signal/RFCMOS, and a wide range of specialty technologies. Production is supported through 10 wafer manufacturing facilities that include two advanced 300mm fabs; Fab 12A in Taiwan and Singapore-based Fab 12i are both in volume production for a variety of customer products. The company employs approximately 13,000 people worldwide and has offices in Taiwan, Japan, Singapore, Europe, and the United States. UMC can be found on the web at http://www.umc.com.
|
Related News
- eMemory and UMC Qualify NeoFuse IP on the Foundry's 28nm High Voltage Process
- UMC Unveils 80nm SDDI Foundry Process Featuring the Industry's Most Competitive SRAM Bitcell
- MoSys' 1T-SRAM-Q Technology Verified on UMC'S 0.13-Micron Logic Process; Foundry's Customers Can Now Access MoSys' Newest High-Density Embedded Memory Technology
- M31 Technology Develops SRAM Compiler IP on TSMC's 28nm Embedded Flash Process Technology Providing High Performance and Low Power Solutions
- Menta Embeds sureCore Low Power SRAM IP on TSMC's 28nm Process
Breaking News
- Andes Technology and proteanTecs Partner to Bring Performance and Reliability Monitoring to RISC-V Cores
- Arteris Releases the Latest Generation of Magillem Registers to Automate Semiconductor Hardware/Software Integration
- Imagination takes efficiency up a level with latest D-Series GPU IP
- Q.ANT and IMS CHIPS Launch Production of High-Performance AI Chips, Establish Blueprint for Strengthening Chip Sovereignty
- sureCore PowerMiser IP enables KU Leuven chip for AI applications to achieve dynamic power saving of greater than 40%
Most Popular
- Intel in advanced talks to sell Altera to Silverlake
- ZeroPoint Technologies Unveils Groundbreaking Compression Solution to Increase Foundational Model Addressable Memory by 50%
- AheadComputing Raises $21.5M Seed Round and Introduces Breakthrough Microprocessor Architecture Designed for Next Era of General-Purpose Computing
- Cortus MINERVA Out-of-Order 4GHz 64-bit RISC-V Processor Platform targets automotive applications
- Siemens delivers certified and automated design flows for TSMC 3DFabric technologies
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |