UMC Announces Foundry Industry's First 28nm SRAMs
HSINCHU, Taiwan -- October 27, 2008 -- UMC (NYSE: UMC; TSE: 2303), a leading global semiconductor foundry, today announced that it has manufactured the foundry industry's first fully functional 28nm SRAM chips. The chips are based on UMC's independently developed low-leakage (LL) process technology. UMC utilized advanced double-patterning immersion lithography and strained silicon technology to produce the chips, which feature very small six-transistor SRAM cell sizes of approximately 0.122 um2.
"UMC's continued R&D commitment has helped us maintain our leadership position in nanometer technology over the years," said S.C. Chien, vice president of advanced technology development at UMC. "We are excited about this latest achievement for 28nm, as it provides a solid starting point for further development of this technology node towards mainstream availability down the road. Improvements on areas such as minimum supply-voltage, modeling of strain effects, and natural yield will be our focus going forward."
UMC incorporates a dual approach for its 28nm technology to address different market applications. The foundry uses conventional silicon gate/silicon-oxy-nitride gate oxide technology for its LL (low leakage) process, which is ideal for portable applications such as mobile phone ICs. UMC's second option will utilize a high-k/metal gate stack for speed-intensive products such as graphic, application processor, and high-speed communication ICs. UMC's 28nm process provides almost twice the density of the 40nm technology, which is currently being produced at its 300mm fabs. UMC will also provide foundry services for customized 32nm technologies based on its 28nm process platform.
About UMC
UMC (NYSE: UMC, TSE: 2303) is a leading global semiconductor foundry that provides advanced technology and manufacturing services for applications spanning every major sector of the IC industry. UMC's customer-driven foundry solutions allow chip designers to leverage the strength of the company's leading-edge processes, which include production proven 65nm, 45/40nm, mixed signal/RFCMOS, and a wide range of specialty technologies. Production is supported through 10 wafer manufacturing facilities that include two advanced 300mm fabs; Fab 12A in Taiwan and Singapore-based Fab 12i are both in volume production for a variety of customer products. The company employs approximately 13,000 people worldwide and has offices in Taiwan, Japan, Singapore, Europe, and the United States. UMC can be found on the web at http://www.umc.com.
|
Related News
- eMemory and UMC Qualify NeoFuse IP on the Foundry's 28nm High Voltage Process
- UMC Unveils 80nm SDDI Foundry Process Featuring the Industry's Most Competitive SRAM Bitcell
- MoSys' 1T-SRAM-Q Technology Verified on UMC'S 0.13-Micron Logic Process; Foundry's Customers Can Now Access MoSys' Newest High-Density Embedded Memory Technology
- M31 Technology Develops SRAM Compiler IP on TSMC's 28nm Embedded Flash Process Technology Providing High Performance and Low Power Solutions
- Menta Embeds sureCore Low Power SRAM IP on TSMC's 28nm Process
Breaking News
- VeriSilicon introduces AcuityPercept: an AI-powered automatic ISP tuning system
- Avant Technology Partners with COSEDA Technologies to Enhance System-Level Software Solutions
- intoPIX Powers Ikegami's New IPX-100 with JPEG XS for Seamless & Low-Latency IP Production
- Tower Semiconductor and Alcyon Photonics Announce Collaboration to Accelerate Integrated Photonics Innovation
- Qualcomm initiates global anti-trust complaint about Arm
Most Popular
- Qualcomm initiates global anti-trust complaint about Arm
- Sarcina Technology launches AI platform to enable cost-effective customizable AI packaging solutions
- EnSilica Agrees $18m 7 Year Design and Supply ASIC Contract
- Siemens to accelerate customer time to market with advanced silicon IP through new Alphawave Semi partnership
- Tower Semiconductor and Alcyon Photonics Announce Collaboration to Accelerate Integrated Photonics Innovation
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |