NXP's New Dual-Core Cortex-M4 and M0 MCU Redefines Digital Signal Control
LPC4000 family’s unique configurable peripheral subsystem allows developers to tailor MCU and DSP solutions
Eindhoven, Netherlands and San Jose, California, November 1, 2010 – NXP Semiconductors N.V. (Nasdaq: NXPI) today announced the LPC4000 family, the world’s first asymmetrical dual-core digital signal controller architecture featuring ARM® Cortex™-M4 and Cortex-M0 processors. The LPC4000 brings the advantage of developing DSP and MCU applications within a single architecture and development environment. With this dual-core architecture and a set of unique configurable peripherals, the LPC4000 enables customers to develop a wide range of applications such as motor control, power management, industrial automation, robotics, medical, automotive accessories and embedded audio. NXP will be showcasing the LPC4000 simultaneously at electronica 2010 in Munich, Germany from November 9 to 12, and at ARM TechCon, Santa Clara, California, from November 9 to 11.
“The LPC4000 is not just another Cortex-M4. We’re introducing multi-core processing to microcontroller and DSP applications,” said Geoff Lees, vice president and general manager, microcontroller product line, NXP Semiconductors. “Equally important are the configurable peripherals that enable LPC4000 users to reduce the need for external ASIC functionality.”
Microcontroller designers who want more efficient ways to tackle math-intensive algorithms and DSP designers who feel constrained on peripherals stand to benefit from the unique architecture of the LPC4000 family. The LPC4000 is also an excellent fit for designers who want to upgrade from an existing DSC processor.
The NXP LPC4000 family features the following components:
- Cortex-M4 processor. The Cortex-M4 processor combines the benefits of a microcontroller – integrated interrupt control, low power modes, low cost debug and ease of use – with high-performance digital signal processing features such as single-cycle MAC, single instruction multiple data (SIMD) techniques, saturating arithmetic, and a floating point unit.
- Optimized memory architecture. The LPC4000 has an optimized 256-bit wide Flash memory architecture which reduces power consumption with minimum memory fetches while maximizing the performance of the Cortex-M4 processor. The LPC4000 features a dual bank architecture that provides up to 1MB Flash for safe re-programming and flexible memory partitioning. The LPC4000 offers 264 KB SRAM, making it the largest available on any Cortex-M microcontroller.
- Cortex-M0 co-processor. A Cortex-M0 subsystem processor offloads many of the data movement and I/O handling duties that can drain the bandwidth of the Cortex-M4 core. This allows the Cortex-M4 to concentrate fully on crunching numbers for digital signal control applications. Having an asymmetrical dual-core gives developers the power, cost and system complexity savings of a one-chip solution – and allows them to more easily partition their software.
- Unique configurable peripherals. NXP’s unique configurable peripherals available on the LPC4000 include a State Configurable Timer, an SPI Flash Interface, and a Serial GPIO Interface. The State Configurable Timer Subsystem consists of a timer array with a state machine enabling complex functionality including event-controlled PWM waveform generation, ADC synchronization, and dead-time control. The SPI Flash Interface provides a seamless high-speed memory-mapped connection to virtually all SPI and quad-SPI manufacturers. NXP’s Serial GPIO, available for the first time on the LPC4000, allows a developer the flexibility to interface to any non-standard serial interface or to mimic multiple standard serial interfaces (such as I2S, TDM for multi-channel audio, I2C and more). Additional peripherals on certain members of the family include two HS USB controllers, an on-chip HS PHY, a 10/100T Ethernet controller with hardware-enabled TCP/IP checksum calculation, and a high-resolution color LCD controller.
- Standard features. Standard features on all members of the LPC4000 family include 32 KB ROM containing boot code and on-chip software drivers, AES-128 decryption (encryption is available on some members of the family), eight-channel General-Purpose DMA (GPDMA) controller, two 10-bit ADCs and 10-bit DAC with data conversion rate of 400k samples/s, a motor Control PWM and Quadrature Encoder Interface, 4 UARTs, 2 Fast-mode Plus I2C, I2S, 2 SSP/SPI, smart card interface, 4 timers, windowed watchdog timer, an alarm timer, an ultra-low power RTC with 256 bytes of battery powered backup registers, and up to 146 general purpose I/O pins.
NXP Semiconductors, one of the first ARM partners to license the latest Cortex-M4 processor, is the only semiconductor vendor offering the full range of ARM Cortex-M0, Cortex-M3 and Cortex-M4 microcontroller families. The LPC4000 is the only Cortex-M4-based controller to have a pin-compatible Cortex-M3-based equivalent, allowing developers the flexibility of designing a system for a microcontroller (M3) or a DSC (M4) in the same footprint. Additional information on NXP’s comprehensive portfolio of microcontrollers is available at: www.nxp.com/microcontrollers
Availability
Engineering samples of the NXP LPC4000 will be available at the end of the month, with full commercial distribution starting in December 2010. The LPC4000 will be featured next week in the NXP booth at electronica in Munich (Hall A4, Stand 542) and at ARM TechCon in Santa Clara (Room 205). More information on the LPC4000 is available at: ics.nxp.com/products/mcus/cortex-m4/
About NXP Semiconductors
NXP Semiconductors N.V. (Nasdaq: NXPI) provides High Performance Mixed Signal and Standard Product solutions that leverage its leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise. These innovations are used in a wide range of automotive, identification, wireless infrastructure, lighting, industrial, mobile, consumer and computing applications. Headquartered in Europe, the company has approximately 28,000 employees working in more than 25 countries and posted sales of USD 3.8 billion in 2009.
|
NXP Hot IP
Related News
- ARM Launches Class-Leading Cortex-M4 Processor For High Performance Digital Signal Control
- NXP Ships World's Fastest ARM Cortex-M4 and Cortex-M3 Microcontrollers
- NXP Licenses ARM Cortex-M4 Processor for 32-bit Microcontroller Signal Processing Applications
- Siemens' state-of-the-art Symphony Pro platform expands mixed signal IC verification capabilities
- IAR Systems enables next generation automotive applications with NXP's S32K3 MCU family
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |