Intel: 450-mm wafers must wait on 10-nm
Peter Clarke, EETimes
2/28/2011 3:39 PM EST
GRENOBLE, France – The 10-nm process node appears to be the ideal point for the adoption of manufacturing on 450-mm diameter wafers, according Leonard Hobbs, head of research for Intel Ireland. Speaking at the Industry Strategy Symposium here (ISS Europe) he also indicated that the transition could not come sooner and could be pushed later, depending on the efficacy of industry collaboration.
Hobbs portrayed the transition taking place 2015 to 2017.
E-mail This Article | Printer-Friendly Page |
Related News
- Intel's 450-mm wafer spend starts in 2013
- Intel Custom Foundry Certifies Synopsys Implementation and Signoff Tools for 10-nm Tri-Gate Process
- Companies Maximize 300mm, 200mm Wafers; Slow Progress on 450mm
- Dresden fab could host 20-nm process, 450-mm wafers
- Could 450-mm wafers play away from the leading edge?
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards