SpringSoft's New ProtoLink Probe Visulaizer Speeds Verification of FPGA-Based Prototype Boards
Debug leader enables real-time design visibility and RTL debug of off-the-shelf and custom boards for fast prototype verification and early SoC system validation
HSINCHU, Taiwan, May 23, 2011 — SpringSoft, Inc., a global supplier of specialized IC design software, today introduced the ProtoLink™ Probe Visualizer to dramatically increase design visibility and simplify debug of FPGA-based prototype boards. The new Probe Visualizer uses patented interconnect innovations and software automation with the industry-leading HDL debug platform to shorten the verification cycle of off-the-shelf or custom-designed prototypes and maximize their return on investment for early validation of system-on-chip (SoC) designs.
Prototype boards are widely used today to verify that critical design modules or entire systems function correctly because of their fast running speeds and low cost. However, board deployment is often delayed and limited to late in the development cycle because they are inherently difficult to setup and lack the visibility needed to adequately debug designs. SpringSoft’s Probe Visualizer changes this paradigm with the ability to probe large numbers of signals over many cycles, easily add/change signals with fast probe ECO flow, and accelerate debug of designs at the register transfer level (RTL) with SpringSoft’s Verdi™ Automated Debug System.
SpringSoft is targeting the prototype verification market with the immediate release of Probe Visualizer as the newest addition to SpringSoft’s award-winning family of verification enhancement products and a major milestone in the company’s mission to accelerate functional closure of complex SoC designs.
“As the capacity and performance of FPGAs get bigger and better, more companies are moving to a FPGA prototyping approach for system-level validation. But, implementation complexity and debug capabilities are still the critical path factors that get in the way of prototype deployment,” said Yu-Chin Hsu, vice president of the Verification Technology and Product Group at SpringSoft. “Probe Visualizer addresses the tremendous verification burden this puts on prototype developers and SoC teams. It uses intuitive, software-based methods to achieve a high level of design visibility and make prototype boards easier to debug starting at the early RTL design stage all the way through final implementation.”
“Given the complexity of multi-processor SoC designs, traditional FPGA prototype flows are not practical due to poor design visibility, extended debug cycles, and costly iterations required to change probes,” said Wen-Ching Wu, director of Design Automation Technology, Division of Information and Communications Research Laboratories (ICL) at Industrial Technology Research Institute (ITRI). “SpringSoft’s ProtoLink Probe approach enables us to adopt a more flexible FPGA verification methodology and brings the power of Verdi debug to the prototype board. We are very encouraged with the early results and look forward to leveraging the real-time visibility and faster debug benefits for a broad range of system prototypes.”
More Visibility, Fast Debug
The Probe Visualizer enables users to expand the number of signals probed from 10s to 1000s, save probe data for millions of clock cycles, and add or change signal probes in minutes without rerunning the entire setup process. It can be deployed if desired with SpringSoft’s Siloti™ Visibility Automation System to determine the minimum set of signals that need to be observed for optimal design visibility. Probe signal data is captured and uploaded into SpringSoft’s Fast Signal Database (FSDB) for debugging.
Seamless integration with SpringSoft’s Verdi HDL debug platform means that just a single design compilation is required to use the advanced visualization and automated tracing capabilities of the Verdi system with the Probe Visualizer. Engineers can view waveforms across multiple FPGAs in order to better analyze design behavior and find the root cause of bugs in the context of the RTL code with which they are most familiar, cutting debug time in half compared to traditional approaches. They can also simply drag-and-drop additional probed signals if needed from the Verdi environment to the Probe Visualizer. Because probe ECOs are tracked via an integrated revision management system by Probe Visualizer, they also can be quickly traced back to specific configurations as needed during debug.
Comprehensive, Easy to Use
The Probe Visualizer runs on conventional engineering workstations and consists of an integrated suite of software, hardware and specialized IP that perform FPGA setup, probe instrumentation, and interface tasks. The software automates the pre-partitioned FPGA setup flow and configures each FPGA on the board with a small footprint, soft IP block to extract the pre-selected probed signals. The hardware interface kit provides everything needed to link the workstation running the Probe Visualizer software with the prototype board. It includes a custom ProtoLink interface card that can be connected to either the J-connectors or Mictor connectors commonly found on FPGA prototype boards and a high-speed Fibre channel that connects the interface card to the workstation. The interface card has on-board Probe Memory to store all probe data without requiring the use of FPGA resources.
Availability & Pricing
The ProtoLink Probe Visualizer is available today for purchase at the list price of US$40,000 for one-year subscription license to the software configured for Red Hat Enterprise Linux OS. It supports popular off-the-shelf prototype boards such as the HAPS System from Synopsys and TAI Logic Module from S2C or custom prototype boards with proper interfacing connectors. For more information about the Probe Visualizer, visit http://www.springsoft.com/products/protolink/.
About SpringSoft
SpringSoft, Inc. (TAIEX: 2473) is a global supplier of specialized automation technologies that accelerate engineers during the design, verification and debug of complex digital, analog and mixed-signal ICs, ASICs, microprocessors, and SoCs. Its award-winning product portfolio features the Novas™ Verification Enhancement and Laker™ Custom IC Design solutions used by more than 400 of today's leading IDM and fabless semiconductor companies, foundries, and electronic systems OEMs. Headquartered in Hsinchu, Taiwan, SpringSoft is the largest company in Asia specializing in IC design software and a recognized industry leader in customer service with more than 400 employees located in multiple R&D sites and local support offices around the world. For more information, visit www.springsoft.com.
|
Related News
- Sunplus Core Technology Speeds ProtoType Verification of Multimedia ICs with SpringSoft's ProtoLink Probe Visualizer
- S2C Announces a Breakthrough Verification Module
- AMD Introduces World's Largest FPGA-Based Adaptive SoC for Emulation and Prototyping
- Aldec's new FPGA-based NVMe Data Storage Solution Targets High Performance Computing Applications
- Altera's Design Solutions Network Connects Customers with Experts to Help Innovate With Their FPGA-Based Designs
Breaking News
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- TSMC drives A16, 3D process technology
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |