Forte Design Systems Announces Cynthesizer 5 SystemC High-Level Synthesis
Low Power Synthesis, SystemC IDE, Redesigned Synthesis Core
SAN JOSE, CALIF. -- May 14, 2013 -- Forte Design Systems™, the #1 provider of software to enable design at a higher level of abstraction, today unwrapped its enhanced Cynthesizer™ SystemC-based high-level synthesis (HLS) product.
The new version includes low power synthesis capabilities, core synthesis algorithms, and a new SystemC integrated development environment (IDE).
"Power efficiency is necessary across the spectrum of devices, and is becoming increasingly more important as the explosion of mobile devices drives the need for big data and cloud devices," says long-time Cynthesizer user Steven Frank, Panève chief executive officer (CEO). "Panève leverages Cynthesizer's unique capabilities to develop radically new big-data architectures that are inherently more efficient in both power and performance. To be able to further optimize power efficiency of a synthesized SystemC design automatically and with minimal engineering effort further validates the SystemC design path and Cynthesizer."
Next-Generation Synthesis Core
"Cynthesizer 5 defines the next generation of high-level synthesis technologies," remarks Brett Cline, Forte's vice president of marketing and sales. "We've leveraged more than a decade of production design experience to allow design teams to get to better results more quickly. Cynthesizer continues to lead the way for quality of results and now includes several advanced optimizations for low power design."
Cynthesizer 5 includes Forte's new "C5" synthesis core, introducing a new architecture that combines the scheduling and allocation phases of the tool, improving predictability and quality of results. New scheduling algorithms allow Cynthesizer to quickly test multiple design microarchitectures and schedules to find the best possible area, performance, and power based on the designers constraints. For existing users, the new C5 core improves area results 9% on average compared to previous Cynthesizer releases.
Low Power Design
Managing power usage is one of the biggest challenges for design engineers. With Cynthesizer 5, design teams can automate complex low power optimizations often difficult or impossible to realize with hand-written register transfer level (RTL) code. Designers can use Cynthesizer's design exploration capabilities to trade off area, performance, and power for a given set of design constraints.
Cynthesizer 5 introduces three major new user-controlled power optimizations to minimize datapath power, register power, clock tree power, and memory power. The patent pending HLS-optimized clock gating technology analyzes and optimizes the design microarchitecture to find additional clock gating opportunities often impossible to find with RTL-based power optimizers. The patent-pending finite state machine (FSM) optimization minimizes power in the FSM as well as power consumed by false switching in the datapath. Finally, memory power optimizations allow designers to optimize memory accesses for performance or power. The combination of these new optimizations can yield power reductions of 60% or more depending on the design.
The new power optimization features complement the existing Cynthesizer low power features. They include quarter- and half-speed memory architectures, low power memory modes, clock domain crossing circuitry for designs with multiple clock speeds, RTL coding techniques optimized for downstream RTL tools, and integrations with popular RTL power analysis and optimizations products.
SystemC IDE and Analysis Environment
The Cynthesizer Workbench graphical user interface included with Cynthesizer 5 includes a SystemC Integrated Development Environment (IDE), making SystemC development easy and intuitive for new users and advanced users alike. Beyond typical IDE features, the Cynthesizer Workbench also provides several SystemC design "kick-starters" to quickly create new models using pre-defined templates to reduce design and debug time.
The internals of the Cynthesizer Workbench have also been redesigned to allow faster design, debug, and analysis of SystemC models and the resulting RTL designs. The analysis environment includes SystemC and RTL source linking, waveforms, and other tools to optimize design results.
Forte will demonstrate its entire Cynthesizer and CellMath™ product portfolio at the 50th Design Automation Conference (DAC) in Booth #1547 Monday, June 3, through Wednesday, June 5, from 9 a.m. until 6 p.m. daily at the Austin Convention Center in Austin, Texas. Private sessions can be requested at: www.ForteDS.com/DAC2013. The DAC website can be found at: www.dac.com.
Availability
Cynthesizer 5 will be available in Q2'13. Pricing is available upon request.
About Forte Design Systems
Forte Design Systems™ is the #1 provider of electronic system-level (ESL) synthesis software, confirmed by Gary Smith EDA, provider of market intelligence for the global Electronic Design Automation (EDA) market. Forte's software enables design at a higher level of abstraction and improves design results. Its innovative synthesis technologies and intellectual property offerings allow design teams creating complex electronic chips and systems to reduce their overall design and verification time. More than half of the top 20 worldwide semiconductor companies use Forte's products in production today for ASIC, SoC and FPGA design. Forte is headquartered in San Jose, Calif., with additional offices in England, France, Japan, Korea and the United States. For more information, visit www.ForteDS.com.
|
Related News
- Forte Unveils Cynthesizer Ultra, Next-Generation High-level Synthesis
- Forte Design Systems Becomes First High-Level Synthesis Software Provider to Support IEEE 1666-2011 SystemC
- Forte's SystemC High-Level Synthesis Licensed by HighIP Design Company
- Realtek Semiconductor Corp. Selects Forte's SystemC High-Level Synthesis, Floating Point IP Software for SoC Design
- Forte Design Systems' SystemC High-Level Synthesis Selected for Fujitsu Semiconductor's ASIC Reference Flow
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |