Digital Core Design Announces SPI master slave enhanced with detectors
Oct 7th, 2013 -- The DSPI_FIFO is a fully configurable SPI master/slave device, which allows to configure polarity and phase of a serial clock signal SCK. DCD’s core enables microcontroller to communicate with serial peripheral de-vices, but also to communicate with an interprocessor in a multi-master system. It supports all the features of SPI and transmission/reception FIFOs, to significantly reduce the CPU time.
The DSPI_FIFO system is flexible enough, to interface directly with numerous standard product peripherals, even from several manufacturers. The system can be configured as a master or as a slave device, with data rates as high as CLK/4. The clock control logic allows to select clock polarity and choose two fundamentally different clocking protocols, to accommodate most available, synchronous serial peripheral devices. When the SPI is configured as a master, the software selects one of eight different bit rates for the serial clock. – A serial clock line (SCK) synchronizes shifting and sampling of the information on two independent serial data lines – explains Jacek Hanke, CEO at Digital Core Design – so the data is simultaneously transmitted and received.
The DSPI_FIFO automatically drives selected by the SSCR (Slave Select Control Register) slave outputs (SS7O – SS0O) and addresses the SPI slave device to exchange serially shifted data. Error-detection logic is included to support interprocessor communication.
A write collision detector indicates, when an attempt is made to write data to the serial shift register, while a transfer is in progress. A multiple-master mode-fault detector automatically disables DSPI output drivers, if more than one SPI device simultaneously attempts to become a bus master.
The DSPI_FIFO supports two DMA modes: single transfer and multi-transfer. These modes allow the DSPI_FIFO to interface to higher performance DMA units, which can interleave their transfers between CPU cycles or execute multiple byte transfers.
DCD’s IP Core is technology independent and silicon proven design. It is fully customizable, which means it is delivered in the exact configuration of customer’s requirements. - There is no need to pay extra for not used features and wasted silicon – ends Hanke. The DSPI_FIFO includes fully automated testbench with complete set of tests allowing easy package validation at each stage of SoC design flow.
Detailed information: http://dcd.pl/ipcore/125/dspi-fifo/
|
Digital Core Design Hot IP
Related News
- Enhanced Serial Peripheral Interface (eSPI) Master/Slave Controller
- Digital Blocks Extends its MIPI I3C Controller IP Core Family with I3C Master/Slave, I3C Master, and I3C Slave Releases.
- DI2CMS, I2C Master - Slave Bus Interface from Digital Core Design
- Digital Blocks Announces the DB-I2C Controller IP Core with the availability of Master-Slave, Master, and Slave Versions for the AMBA 2.0 APB Interconnect
- RIKEN adopts Siemens' emulation and High-Level Synthesis platforms for next-generation AI device research
Breaking News
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- Veriest Solutions Strengthens North American Presence at DVCon US 2025
- Intel in advanced talks to sell Altera to Silverlake
- Logic Fruit Technologies to Showcase Innovations at Embedded World Europe 2025
- S2C Teams Up with Arm, Xylon, and ZC Technology to Drive Software-Defined Vehicle Evolution
Most Popular
- Intel in advanced talks to sell Altera to Silverlake
- Arteris Revolutionizes Semiconductor Design with FlexGen - Smart Network-on-Chip IP Delivering Unprecedented Productivity Improvements and Quality of Results
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- YorChip announces Low latency 100G ULTRA Ethernet ready MAC/PCS IP for Edge AI
- AccelerComm® announces 5G NR NTN Physical Layer Solution that delivers over 6Gbps, 128 beams and 4,096 user connections per chipset
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |