As Moore's Law slows, open hardware rises
Jessica MacNeil, EDN
April 04, 2014
At 8-years old, Andrew “Bunnie” Huang appreciated the fact that his Apple II came with schematics and source code because it allowed him to figure out how it worked.
“I was wondering what all these little black things on the board were and I would take the chips out and put them in backwards, even though my dad told me not to,” said Huang during his EE Live! 2014 keynote on open-source hardware and the future of embedded systems. “He was right; you don’t put the chips in backwards.”
Today that information is guarded and protected in the hardware industry and Huang, now a research affiliate at MIT who holds a PhD in electrical engineering from the school, realized this change wasn’t because hardware became too complex, but because it was too easy to improve, and Moore’s Law was tough to keep up with.
If Moore’s Law saw technology doubled every 18 months, that meant someone working on a linear improvement, like optimizing a process node, could be getting 80% performance improvement per year, and Moore’s Law would be shipping something better by year two.
“So the problem has been that sitting and waiting has actually been a viable strategy versus innovation,” said Huang. “This problem is particularly acute in hardware.”
E-mail This Article | Printer-Friendly Page |
Related News
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards