Samsung's 14nm FinFET Process Technology Ecosystem Solidly in Place for Mobile Consumer and IT Infrastructure SoC Applications
SAN FRANCISCO -- Jun 02, 2014 -- Stating that not all FinFETs are created equal, Samsung Electronics Co., Ltd., a global leader in advanced semiconductor solutions, today announced that the IP and design enablement ecosystem for its foundry’s 14nm FinFET process technology is firmly in place as customers begin their early design work. Highlighting this fact, Samsung will be demonstrating a 14nm FinFET system-on-chip (SoC) reference board at the 51st Annual Design Automation Conference in San Francisco, June 2-4, Booth #819.
“To ease customers design risks moving to 14nm FinFET, we need to have all the elements of the design ecosystem optimized well in advance,” said Dr. Shawn Han, vice president of foundry marketing, Samsung Electronics. “We are pleased to work with the industry’s leading IP and design enablement companies. Our early work at this advanced node will allow our customers to bring their next-generation SoCs to the market quickly while taking full advantage of the benefits of our 14nm FinFET technology.”
Samsung’s foundry offering has focused its 14nm FinFET ecosystem efforts with key IP partners. Collaboration specifically around optimal Fin-based design infrastructure and early FinFET IP development has resulted in foundation libraries and advanced IP suite. On the enablement side, Samsung, with its EDA partners, has worked to optimize 3D device modeling, extraction solutions, and design verification as well as Design for Manufacturing (DFM) solutions. The result of which is the 14nm FinFET reference board that will be on display at DAC 2014.
ARM® Artisan® physical IP for Samsung’s 14nm FinFET process technology is now available for SoC designers and is the result of years of collaboration between ARM and Samsung. This partnership to develop foundation IP began with 45nm technology, leading to 32/28nm High-K Metal Gate (HKMG). This long-term collaboration has resulted in an optimized physical IP solution that provides greatly improved performance, lower leakage, and superior dynamic power characteristics. When used with the ARM Cortex® processors, this foundation IP enables a new generation of leading-edge, energy-efficient products for a wide range of markets that extends from mobile computing to new and emerging markets.
Through tight collaboration with Cadence, Samsung offers a full RTL-to-signoff flow that is power-, performance- and area-optimized for the 14nm FinFET process. This flow has been used to implement multiple early tapeouts on the process, including the first announced ARM processor tapeout in December 2012. Cadence provides a complete methodology for custom and digital design, place-and-route, extraction, timing, physical verification and DFM, including support for the Cadence Virtuoso and Encounter platforms through SKILL-based PDKs, EDI System and QRC extraction tech files and Physical Verification System rule decks.
Mentor is supporting Samsung’s 14nm FinFET process technology with its Manufacturing Analysis and Scoring (MAS) deck, which prioritizes different DFM effects and makes recommendations on how to modify the design. Sign-off enabling for 14nm FinFET process technology also includes decks for design rule checking with double patterning and pattern matching-based verification, layout vs. schematic checking, lithography friendly design, and DFM with advanced fill.
The entire Synopsys Galaxy Design Platform is broadly supported on Samsung’s 14nm FinFET process, for design tasks ranging from custom design through final place-and-route and signoff of complex SoCs. The Galaxy Design Platform tools, Samsung Foundry 14nm FinFET PDKs and associated tool usage have been tuned to deliver optimal results for SoC designers targeting the power and performance benefits of FinFET technology. Synopsys and Samsung have also proven the process, tool capabilities and IP in silicon via a series of complex SoCs which included both high performance processors and Synopsys-developed IP, including the recently certified DesignWare USB 3.0 femtoPHY.
Silicon-based PDK Availability
With process design kit of 14nm FinFET process technology available to customers today, customers can start designing with silicon-based SPICE models, extraction decks, design rule manuals and technology files that have been developed based on silicon results from 14nm FinFET test chips run in Samsung’s state of art 300mm fabs. The PDK includes router tech files and other design enablement features to support the new 3-dimensional FinFET device structures, middle of line (MOL), and double patterning enablement used in the back end of line (BEOL) process. The investments that Samsung is making into the entire ecosystem at 14nm will give customers early access to all elements of the design infrastructure to accelerate their chip development.
About Samsung Electronics Co., Ltd.
Samsung Electronics Co., Ltd. is a global leader in technology, opening new possibilities for people everywhere. Through relentless innovation and discovery, we are transforming the worlds of TVs, smartphones, tablets, PCs, cameras, home appliances, printers, LTE systems, medical devices, semiconductors and LED solutions. We employ 286,000 people across 80 countries with annual sales of US$216.7 billion. To discover more, please visit www.samsung.com .
* Editors’ Note : Samsung Electronics' Foundry business is dedicated to support fabless and IDM semiconductor companies offering full service solutions encompassing design kits and proven IP to fully turnkey manufacturing to achieve market success with advanced IC designs. For more information, please visit www.samsung.com/Foundry
Addendum
Samsung Foundry 14nm FinFET Ecosystem Partner Quotes
ARM
“The delivery of ARM’s foundation IP for Samsung’s 14nm FinFET process technology will benefit the mobile computing sector and beyond. Because of our close collaboration with Samsung while developing 14nm FinFET foundation IP, our mutual customers will be able to quickly develop higher-performance, energy-efficient SoCs for next-generation devices with longer battery life.”
Ron Moore
Vice President of Marketing, Physical Design Group, ARM
Cadence
“As our leading-edge customers begin moving to FinFET processes, it is important the tools are ready and the flows are enabled to make their designs successful. By working closely with Samsung on PDKs, library development and early tapeouts on its 14nm FinFET process, we are able to offer customers a complete end-to-end design flow that enables designers to take advantage of the performance and low-power capabilities of this node.”
Nimish Modi
Senior Vice President, Marketing and Business Development at Cadence.
Mentor
“The collaboration between Mentor Graphics and Samsung Electronics Co. continues to expand as Samsung’s FinFET technology is made available to more customers. Our mutual development for the latest technologies at Samsung allows common customers to get to market faster helping maintain leadership in their target markets.”
Joseph Sawicki
Vice President and General Manager of the Design to Silicon Division at Mentor Graphics.
Synopsys
“Synopsys and Samsung initiated a deep collaboration three years ago to deliver the full benefits of 14nm FinFET to SoC designers via a complete tools and IP enablement approach. We’re seeing the results in our joint silicon successes with Samsung and with early end-customer tapeouts. In recognition of our collaboration, it is an honor to be granted by Samsung Electronics System LSI business group their appreciation award for Synopsys contributions in 14nm FinFET enablement.”
Rich Goldman
Vice President of Corporate Marketing and Strategic Alliances at Synopsys
|
Related News
- Synopsys' Custom Compiler Enabled for Samsung Foundry's 14-nm FinFET Process
- Samsung Announces Mass Production of Industry's First 14nm FinFET Mobile Application Processor
- Synopsys and Samsung Electronics Collaborate to Achieve First Production Tapeout of Flagship Mobile CPU with Leading Performance on Samsung Foundry's GAA Process
- CEVA Joins Samsung SAFE™ Foundry Program to Accelerate Chip Design for the Mobile, Consumer, Automotive, Wireless Infrastructure and IoT Markets
- SEMIFIVE Achieves Mass Production Milestone of its SoC Platform
Breaking News
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Cadence Unveils Arm-Based System Chiplet
Most Popular
- Cadence Unveils Arm-Based System Chiplet
- CXL Fabless Startup Panmnesia Secures Over $60M in Series A Funding, Aiming to Lead the CXL Switch Silicon Chip and CXL IP
- Esperanto Technologies and NEC Cooperate on Initiative to Advance Next Generation RISC-V Chips and Software Solutions for HPC
- Eliyan Ports Industry's Highest Performing PHY to Samsung Foundry SF4X Process Node, Achieving up to 40 Gbps Bandwidth at Unprecedented Power Levels with UCIe-Compliant Chiplet Interconnect Technology
- Arteris Selected by GigaDevice for Development in Next-Generation Automotive SoC With Enhanced FuSa Standards
E-mail This Article | Printer-Friendly Page |